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Abstract. This paper proposes a physical motion evaluation system
based on human pose sequences estimated by a depth sensor. While
most similar systems measure and evaluate the motion of only a part of
interest (e.g., knee), the proposed system comprehensively evaluates the
motion of the entire body. The proposed system is designed for observ-
ing a human motion in daily life in order to find the sign of aging and
physical disability. For daily use, in this paper, we focus on walking mo-
tions. These motions with a variety of physical disabilities are recorded
and modeled in advance for classification purposes. This classification is
achieved with a set of pose features extracted from walking motion se-
quences. In experiments, the proposed features extracted from the entire
body allowed us to identify where a subject was injured with 81.1 %
accuracy. The superiority of the entire-body features was also validated
in estimating the degree of lesion in contrast to local features extracted
from only a body part of interest (77.1 % vs 65 %).

Keywords: Gait motion, Entire-body motion, Lesioned part, Depth
sensor, 3D human pose

1 Introduction

The number of people suffering from chronic diseases is constantly rising. Today,
more than three quarters of the elderly population are suffering from chronic
diseases, independent of the economic, social, and cultural background [21]. Such
diseases can be possibly avoided or decreased if people often undergo a medical
examination and find the early symptoms of these diseases [3]. It is, however,
difficult for most people to frequently have supports by experts such as medical
doctors and therapists. While complete diagnosis systems must be able to find a
variety of diseases, we focus on the physical fitness of a lower body, in particular,
a gait motion, which is crucial to maintain the quality of life.

As people get older, most of them may have the symptoms of lesions and/or
aging on the lower body more or less. For example, a prevalence of knee os-
teoarthritis ranges from 19 % in women aged 50–59 to 56 % in men in the
70-90 year-old age group [6]. Such symptoms transfer in various ways such as
insensitive sensation, and motor malfunction [10,23]. In terms of the motor mal-
function, people may have muscle weakness [12] and/or knee osteoarthritis [1].
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Fig. 1. Lesioned-part identification using a local appearance (upper row) versus an
entire-body appearance (lower row). In examples shown in this figure, the right knee
of a subject was tightly bandaged. At each frame, gait-phase-synchronized bodies in
a natural motion (left side at each frame) and a motion with a lesioned right knee
(right side at each frame) are shown. While differences between these two motions at
each frame are not significant, the pose of the entire body with the lesioned right knee
differs from the one in the natural motion.

These symptoms cause a change in the patterns of a gait motion [5]. The change
in the gait motion increases the risk of slipping and falling [2].

The goal of this work is to develop easy-to-use diagnosis systems that support
the evaluation of physical patterns in the gait motion. For this evaluation, this
paper proposes a method for classifying several symptoms of lesions on the lower
body (e.g., knees and ankles), which are observed in the gait motion.

For precisely evaluating symptoms observed in gait motions, our contribution
is to employ appearance information extracted from the entire body rather than
local body parts such as knees and ankles. Figure 1 allows us to intuitively
understand the effectiveness of the entire body appearance. In the upper row,
the local appearance of a lesioned right knee is shown. This local appearance
reveals less difference between a natural motion (shown in the left-hand side at
each frame) and a motion with a lesioned right knee (shown in the right-hand
side at each frame). On the other hand, we can easily see differences between
these two motions in the appearance of the entire body shown in the lower row;
for example, the upper body with the lesioned right knee is inclined backward
and to the left for balancing. In this paper, a set of gait features is employed
and appropriately pruned for robust lesioned-part identification.
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2 Related Work

The proposed system employs a depth sensor for the evaluation of a 3D gait
motion, which is expected to be more informative for lesioned-part identification
than silhoette-based gait motions (e.g., [24,25]). The depth sensor is able to
robustly reconstruct the 3D pose (i.e., 3D positions of joints) of a person of
interest [13,7] rather than a conventional RGB camera. While such a camera
can observe people only within its field of view, people are not required to carry
any wearable sensors [17] and their motions are not affected by these sensors.
In addition, for our goal (i.e., finding the symptoms in a gait motion), 24-hour
observation using wearable sensors is not necessarily required.

A temporal sequence of a 3D body pose is defined as a gait motion. From
the gait motion, we can extract several features representing physical symptoms
caused by aging and/or physical disability. For these features, walking speed,
stride, pace, etc. are useful [8]. For example, walking speed, stride, and pace
become slow, short, and slow, respectively, due to the motor function decline [2].
As well as the walking speed, its acceleration is different between healthy people
and elderly and/or disabled people [4,16]. It is also known that the anteversion of
pelvis becomes smaller and left-right asymmetric due to the hemiplegia arthrosis
[9].

The aforementioned features are well known in the literature in physiother-
apy and biomechanics. However, these features are extracted from only target
body parts/joints in previous work mentioned above. However, we know intu-
itively that not only the motion of lesioned part(s) but also the one of the entire
body is affected as the symptom of aging and/or physical disability. This paper
proposes a system that identifies lesioned part(s) based on gait motion features
extracted from the entire body. While the closest work to our system is presented
in [11], this method [11] analyzes the motion variation of the entire body under
an assumption that a lesioned body part is known. For the purpose of finding
such lesioned part(s), this is a kind of chicken-and-egg problem. On the other
hand, our proposed system finds lesioned part(s) and estimated their symptoms
(i.e., how severe the symptom is) from gait features extracted from a temporal
sequence of a 3D body pose.

3 Overview of the System

The overview of the proposed system is illustrated in Fig. 2.

In its learning step (bottom row in Fig. 2), a number of gait patterns including
the symptoms of lesions on various body parts are observed by a depth sensor.
Each observed depth sequence is used to estimate the sequence of 3D body
poses (i.e., skeletons) by using a pose estimation model [13,7], as shown in “Gait
measurement” in Fig. 2. From the sequence of estimated 3D skeletons, a set of
gait features are extracted. Since each set of gait features is labeled with the
lesioned body part, a classifier (“Classification model” in Fig. 2) can be trained.
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Fig. 2. Overview of the proposed system. The learning and identification steps are
shown in lower and upper rows, respectively. Data are enclosed by rectangles and their
flows are visualized by arrows in the figure.

(a) Bandaged knee (b) Immobilized knee (c) Bandaged ankle

Fig. 3. Spurious lesions given for our experiments.

When the depth sequence of a gait motion is observed for lesioned-part iden-
tification, its gait features are extracted as in the learning step. Then the set of
the gait features is classified in order to identify the lesioned part.

4 Gait Features for Lesioned-part Identification

4.1 Dataset Collection for Lesioned-part Identification

For realistic data and applications, it’s better to collect and use the data of
people who are actually lesioned. It is, however, difficult to collect a number
of such data1. Instead of the real data, in this paper, spurious lesions were
given to several body parts by bandaging or immobilizing them as shown in Fig.
3. Then gait motions with these spurious lesions were collected and used for
classification. The spurious lesions, which were determined under the direction

1 The authors have just collecting a dataset of gait motions of elderly people. So far,
the motions of around 200 elderly people have been collected. After this dataset is
ready to use, it will be used for further investigation.
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of a physiotherapist for our experiments, emulate the functional decline of joints
caused by aging; for example, bending and stretching the knee [15] and the
plantar flexion and dorsiflexion of the ankle [14].

The following gait motions were observed for classification:

Natural gait motion: Natural gait motions of physically-healthy people with
no bandage.

Gait motion with bandaged knee(s): When the knee of a subject was bent
90 degrees, it was bandaged weakly or tightly. Each of both knees was ban-
daged. In addition to two by two combinations (i.e., left/right knees ban-
daged weakly/tightly), the gait motion of each subject was observed also
when both knees were bandaged tightly. In total, five conditions were ob-
served. The motion of a bandaged knee is similar to a decrease in the articular
range of motion due to aging.

Gait motion with immobilized knee(s): When the knee of a subject was
straight, it was immobilized with a splint. In this immobilization condition,
the knee was almost fixed. This condition is similar to the symptom of a
muscle strain. Each of both knees was immobilized separately. That is, two
conditions were observed for each subject.

Gait motion with bandaged ankle(s): When the ankle of a subject was bent
90 degrees, it was bandaged. For experiments, left ankle, right ankle, and
both ankles were bandaged separately. In total, three conditions were ob-
served for each subject.

Eventually, 11 conditions (1 + 5 + 2 + 3) of gait motions were observed for
each subject.

4.2 Gait Features representing the Motion of the Entire Body

As described in Sec. 3, the temporal sequence of a 3D skeleton is obtained by
a depth sensor. In our experiments, a Kinect V2 sensor and its SDK were used
together for 3D skeleton estimation.

A set of gait features are detected from the 3D skeletons of one gait cycle.
This gait cycle is extracted from the observed sequence of the 3D skeleton so that
each cycle begins and ends when the left knee is in front of and furthermost from
the pelvis. All gait cycles are temporally normalized so that all of them consist
of the same number of frames. In the normalized gait cycle, the 3D skeleton of
each frame (denoted by P i for i-th frame) is synthesized from observed skeletons
with linear interpolation:

P i =

(
di(+)

di(−) + di(+)

P̂ i(−)

)
+

(
di(−)

di(−) + di(+)

P̂ i(+)

)
where P̂ i(−) and P̂ i(+) denote the observed skeletons whose observed times are
closest to the time of i-th frame. P̂ i(−) and P̂ i(+) are observed prior to and later
than P i, respectively. di(−) and di(+) denote respectively the time differences
from the time of i-th frame to the observed times of P̂ i(−) and P̂ i(+) .
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From each frame in the normalized temporal sequence, the following gait
features are computed in our proposed system:

1. Relative x, y, z positions between the mid-spine and each joint/endpoint
2. Relative x, y, z velocities between the mid-spine and each joint/endpoint
3. Relative x, y, z accelerations between the mid-spine and each joint/endpoint
4. Angle of each joint
5. Angular velocity of each joint
6. Walking velocity along a moving direction
7. x, y, z positions of a body centroid
8. x, y, z velocities of a body centroid

From a 3D skeleton reconstructed using a Kinect V2, relative positions, ve-
locities, and accelerations from the mid-spine to the head, neck, pelvis, both
shoulders, both elbows, both wrists, both groins, both knees, both ankles, and
both feet (in total, 17 points) are computed for the aforementioned features 1,
2, and 3, respectively. Joint angles and angular velocities are computed in the
spine, neck, both shoulder blades, both shoulders, both elbows, both groins, both
knees, and both ankles (in total, 14 points) for the features 4 and 5, respectively.
The joint angle (radian) of joint j is represented by the 3D position of j and
those of j’s parent and child joints. A body centroid is determined based on a
weight distribution in a human body; according to a report from a physiother-
apy, the weights of the head, neck, both arms, torso, and both legs are 4 %, 3
%, 10 %, 48 %, and 35 %, respectively.

In addition to eight features listed above, each of them is subtracted from
the mean of natural gait motions in training data. These features are called
mean-normalized features. In total, 8 + 8 = 16 features are extracted from
each frame. All of these features extracted from all frames are concatenated to
compose a gait feature vector.

The dimension of the above mentioned gait feature vector is huge. Specifi-
cally speaking, the concatenation of 16 gait features is a 376-dimensional vector:
((17 × 3) + (17 × 3) + (17 × 3) + 14 + 14 + 1 + 3 + 3) × 2 = 376. For improv-
ing the discriminativity of the gait feature vector, its dimension is reduced by
two schemes, namely backward search (a.k.a. backward feature elimination) and
linear discriminant analysis (LDA), as follows:

Step 1: Assume the current dimension of a gait feature is N ; initially, N = 376.
For backward search, a LDA is trained with N components of all training
samples. In the same way, N LDAs are trained with (N − 1) components of
all training samples so that one of N components in the gait feature vector
is not used for each of N LDAs.

Step 2: All of these (N + 1) LDAs are tested with validation data; a cross
validation scheme is performed.

Step 3: If one of LDAs with (N−1) components (which is trained without k-th
component) gets the best score in this validation, k-th component is removed
from the gait feature vector. Then, go back to Step 1. Otherwise, namely if
the LDA with N components is the best, the backward search ends. This
LDA is used for lesioned-part identification.
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Fig. 4. Environment for capturing our gait dataset. A subject begins to walk in the
acceleration area. While the subject walk through the measurement area, the temporal
sequence of gait features are extracted.

With training data stored in the selected LDA space, k-Nearest Neighbor is
employed for lesioned-part identification.

5 Experiments

For experiments, the gait motions of 10 subjects were observed in a laboratory
setup (Fig. 4). All of them were adult males, whose height and weight was 170cm
and 63kg on average. Each of 11 gait motions was captured 10 times for each
subject. From each gait sequence, one gait cycle was extracted. In total, 110 gait
cycles were captured for each subject. In all experiments shown below, leave-
one-out cross validation was used.

The effect of dimensionality reduction was investigated with each individ-
ual data (i.e., all data observed from each subject). As the result of backward
search, gait features (1), (5), (8), (1′), (6′), (7′), and (8′), which are described in
Sec. 4.2, were selected2. (l′) denotes the mean-normalized feature of feature (l).
Comparison between results using all features and the selected features is shown
in Table 1. This table shows the percentage of correctly-identified lesions. The
performance was increased by around 10 % on average.

With the selected features, a confusion matrix is computed. Each value in
the confusion matrix is the mean of results for all subjects. Table 2 shows the
results of lesioned-part identification when all 11 kinds of gait motions were
classified. This result is equivalent to the one shown in Table 1; the mean of
diagonal values in Table 2 is 81.1, which is also shown as the mean in Table 1.

2 For efficiency, backward search was executed so that (1) one gait feature is selected
from 16 gait features and (2) all components in the selected gait feature were not
used at each search step rather than each component of a gait feature vector.
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Table 1. Effect of dimensionality reduction using backward search for lesioned-part
identification. The mean of all gait motions is shown in each subject. For identification
in i-th subject, training data of only i-th subject was used to train the LDA.

Subjects All features (%) Selected features (%)

A 62.7 73.6
B 60.5 66.8
C 67.7 80.5
D 76.8 87.2
E 61.8 75.9
F 67.3 80.5
G 86.8 91.4
H 86.3 91.4
I 71.8 83.6
J 73.6 79.6

Mean 71.6 81.1
Table 2. Confusion matrix of lesioned-part identification for 11 gait motions. All results
were obtained with the selected features. Values above 10 % are highlighted in read
cells.

Weak Tight Fixed Weak Tight Fixed

91.5 1.5 0.5 0.0 3.0 0.5 0.0 1.0 1.5 0.0 0.5
Weak 0.0 84.0 12.0 0.0 1.5 0.0 0.0 1.5 1.0 0.0 0.0
Tight 2.0 16.0 74.5 0.0 2.5 1.5 0.0 2.0 1.0 0.0 0.5
Fixed 0.0 1.0 1.5 95.5 0.0 0.0 0.5 1.5 0.0 0.0 0.0
Weak 3.0 1.5 1.0 0.0 69.0 18.0 0.0 3.0 1.0 3.0 0.5
Tight 2.0 0.5 2.5 0.0 24.0 57.5 0.0 4.5 1.0 6.5 1.5
Fixed 0.0 0.0 0.0 0.0 2.0 0.0 98.0 0.0 0.0 0.0 0.0

0.0 2.5 3.5 0.5 1.5 2.5 0.5 88.0 0.5 0.5 0.0
0.5 1.0 3.0 0.0 2.5 1.0 0.0 1.5 81.5 1.0 8.0
1.5 0.0 0.0 0.0 6.0 3.5 0.0 0.5 4.0 74.5 10.0
0.0 0.0 1.0 0.0 2.0 0.5 1.0 0.0 8.5 9.5 77.5

Condition Natural

Right knee Left knee
Both
knees

Right
ankle

Left
ankle

Both
ankles

Both ankles

Natural

Right knee

Left knee

Both knees
Right ankle
Left ankle

As expected, it can be seen that it was difficult to discriminate between weakly-
and tightly-bandaged knees.

To improve the discriminativity between different symptoms (e.g., weak and
tight bandages) in the same body part, a two-step identification scheme was
tested. In this scheme, only the position of lesion is identified initially. In our
experiments, motions of tightly- and weakly- bandaged joints as well as im-
mobilized joints were merged in each of right and left knees. If such a part is
considered to be lesioned by the initial identification, the degree of the lesion
is determined by a classification model that is trained by only the samples of
lesions in this part; for example, the motions of weakly- and tightly-bandaged
knees and immobilized knees are used for training for each of right and left knees.
The results of initial classification (i.e., classification among 7 gait motions) are
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Table 3. Confusion matrix of lesioned-part identification for 9 gait motions. Both for
right and left knees, tightly- and weakly- bandaged motions were merged. All results
were obtained with the selected features.

90.0 5.0 2.0 1.0 0.5 1.0 0.5
0.3 93.8 2.7 1.8 0.7 0.0 0.7
1.3 2.7 91.7 1.3 0.7 2.0 0.3
0.0 8.5 5.0 85.5 0.5 0.5 0.0
0.5 5.5 4.0 0.5 79.0 2.0 8.5
0.5 0.0 6.5 0.0 4.0 79.0 10.0
0.0 1.0 1.0 0.5 7.0 10.0 80.5Both ankles

Natural
Right knee
Left knee

Both knees
Right ankle
Left ankle

Condition Natural Right knee
Left
knee

Both
knees

Right
ankle

Left
ankle

Both
ankles

Table 4. 3-class classification accuracy. This classification identifies the symptom on
a lesioned part, after the initial classification, whose results are shown in Table 3,
determines the lesioned part (right or left knees in examples shown in this table). The
mean of classification accuracy is 77.1 %.

Right knee (%) Left knee (%)

Weakly-bandaged 85.0 87.0
Tightly-bandaged 82.5 87.0
Immobilized 99.1 98.5

Table 5. Results of 3-class classification using local features. While this classification
employs only several features extracted around a target part (i.e., right or left knee),
the results shown in Table 4 were obtained with the features of the entire body. The
mean of classification accuracy is 65.0 %.

Local features Right knee (%) Left knee (%)

Weakly-bandaged 58.0 69.5
Tightly-bandaged 44.0 50.0
Immobilized 85.5 83.0

shown in Table 3. Table 4 shows the results of the second step where the motions
of weakly- and tightly-bandaged knees and immobilized knees are classified after
the initial classification. The final mean score of this two-step identification is
83.1 %3, which is 2 % above the result shown in Tables 1 and 2.

Next, the effect of gait features extracted from the entire body is validated.
This effect is validated by comparing the results obtained with the entire-body
gait features with those with local parts. Results obtained with only local fea-
tures are shown in Table 5. Specifically, the local features consist of gait features

3 This accuracy is computed from the diagonal values of the confusion matrix in Table
3 and the results of 3-class classification in Table 4 as follows: (90.0 + 3 × (93.8 ×
85.0+82.5+99.1

3
) + 3× (91.7× 87.0+87.0+98.5

3
) + 85.5 + 79.0 + 79.0 + 80.5)/11 = 83.1
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Table 6. Confusion matrix of lesioned-part identification using gait features extracted
from only the lower body.

Weak Tight Fixed Weak Tight Fixed

83.5 2.5 2.5 0.0 4.0 0.5 0.0 0.5 2.5 3.0 1.0
Weak 0.0 64.5 27.0 0.5 2.0 0.5 0.0 4.0 0.0 0.5 1.0
Tight 1.5 33.0 55.0 0.5 3.5 1.0 0.0 4.0 1.5 0.0 0.0
Fixed 0.0 1.5 2.0 95.0 0.5 0.0 0.0 0.5 0.0 0.0 0.5
Weak 3.5 1.0 1.5 0.0 57.0 21.5 1.5 4.0 1.5 5.0 3.5
Tight 1.0 1.5 0.5 0.0 33.5 55.0 0.5 3.5 1.0 2.5 1.0
Fixed 0.0 0.0 0.0 0.0 1.0 0.5 98.5 0.0 0.0 0.0 0.0

1.0 2.5 2.5 0.5 4.5 3.5 1.0 83.5 0.0 0.5 0.5
2.5 1.5 3.0 0.0 2.0 0.5 0.0 0.0 78.5 2.0 10.0
1.5 0.0 1.0 0.0 4.5 2.0 0.0 0.5 4.5 74.0 12.0
0.0 0.0 0.0 0.0 3.0 1.5 0.0 0.0 11.5 14.0 70.0Both ankles

Natural

Right knee

Left knee

Both knees
Right ankle
Left ankle

Condition Natural

Right knee Left knee
Both
knees

Right
ankle

Left
ankle

Both
ankles

Table 7. Confusion matrix of lesioned-part identification using gait features extracted
from only the upper body.

Weak Tight Fixed Weak Tight Fixed

86.5 5.5 1.5 0.5 1.5 1.0 0.0 1.5 0.5 1.0 0.5
Weak 3.5 68.5 14.5 1.0 4.5 0.0 0.5 3.0 3.0 0.5 1.0
Tight 0.5 13.5 50.0 3.0 7.5 7.5 0.5 6.5 2.5 7.0 1.5
Fixed 1.0 2.0 4.5 85.5 0.0 1.0 0.5 2.5 2.0 0.5 0.5
Weak 0.5 6.0 3.0 0.0 41.5 19.0 1.5 6.0 6.0 9.5 7.0
Tight 2.5 2.0 4.0 0.0 23.0 43.0 1.0 6.5 2.0 6.0 10.0
Fixed 0.0 1.0 0.5 0.5 2.0 1.5 87.0 1.5 1.0 2.5 2.5

1.5 3.5 10.5 1.0 5.5 6.5 1.5 61.0 4.0 3.5 1.5
0.5 2.5 4.0 0.0 7.0 4.0 0.5 3.0 53.0 12.5 13.0
0.5 1.5 2.5 0.5 8.5 6.0 0.5 1.0 12.0 53.5 13.5
0.5 2.5 2.0 0.5 8.0 4.0 0.5 2.5 7.5 15.5 56.5Both ankles

Natural

Right knee

Left knee

Both knees
Right ankle
Left ankle

Condition Natural

Right knee Left knee
Both
knees

Right
ankle

Left
ankle

Both
ankles

(1), (2), (3), (4), (5), (1′), (2′), (3′), (4′), and (5′) where (l′) denotes the mean-
normalized feature of feature (l), all of which are described in Sec. 4.2. Com-
parison between Tables 4 and 5 reveals the preponderance of the entire-body
features over the local features.

For further analysis between entire-body and local features, confusion ma-
trices obtained with gait features of lower- and upper-body parts are shown in
Tables 6 and 7, respectively. The mean values of the percentages of correctly-
identified lesions in Tables 6 and 7 are 74.1 % and 62.4 %, respectively, while the
one of the entire-body features is 81.1 %. From these results, it has been demon-
strated that the entire-body features are useful for lesioned-part identification.

In all experiments shown above, a training data for each subject consists
of only this subject’s data; a classification model was trained individually. For
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universal models that can be used by anybody, a classification model must be
trained by training data of all subjects and applied to anybody. To examine the
effectiveness of the proposed system for such universal models, the percentage of
correctly-identified lesions was computed with a leave-one-out cross validation
procedure. The mean percentage among all subjects and all gait motions was 66
%, which is much lower than the one computed with individual models (i.e., 81.1
%). This is a natural consequence because people have their own gait patterns,
which are utilized for gait recognition [22].

Improving the performance of lesioned-part identification using a universal
model is one of important future issues. To this end, gait features robust to
individual variation should be explored.

6 Concluding Remarks

This paper proposed a system using a depth sensor for finding the symptoms of
lesions on the lower body. For finding the lesioned part and its degree of lesion,
the proposed system employs a set of gait features representing the motion of the
entire body rather than local features around each body part. Compared with the
local features, the effectiveness of the entire-body gait features was demonstrated
in experiments; 11-class classification rates were improved: for example, 74.1 %
by the features of the lower body vs 81.1% by the features of the entire body.

Future work includes experiments with a large number of elderly people
rather than people with spurious lesions. As discussed at the end of Sec. 5,
it is important to improve lesioned-part identification using universal models for
more general use. For basic techniques for estimating more accurate 3D pose
sequences, a human motion prior [19,20,18] is useful.
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