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PAPER

Pose Estimation with Action Classification Using Global-and-Pose
Features and Fine-Grained Action-Specific Pose Models

Norimichi UKITA†a), Senior Member

SUMMARY This paper proposes an iterative scheme between human
action classification and pose estimation in still images. Initial action clas-
sification is achieved only by global image features that consist of the re-
sponses of various object filters. The classification likelihood of each action
weights human poses estimated by the pose models of multiple sub-action
classes. Such fine-grained action-specific pose models allow us to robustly
identify the pose of a target person under the assumption that similar poses
are observed in each action. From the estimated pose, pose features are
extracted and used with global image features for action re-classification.
This iterative scheme can mutually improve action classification and pose
estimation. Experimental results with a public dataset demonstrate the ef-
fectiveness of the proposed method both for action classification and pose
estimation.
key words: human action classification, human pose estimation, action-
specific pose models

1. Introduction

Understanding human activities is one of the main topics in
computer vision. This paper focuses on two kinds of repre-
sentations of human activities, namely a human body pose
and an action class.

In action classification, each action observed in im-
ages is classified to one of predefined classes (e.g. baseball,
badminton). While most of related work classify the ac-
tion in videos by using temporal cues, action classification
in still images [1]–[7] is not only challenging but also use-
ful for several uses (e.g. context-based image retrieval and
static cues for classification in videos).

For action classification, both global and local features
provide informative cues. Global scene features are useful
because human actions are relevant to the surrounding scene
and related objects [8]. These features are ambiguous for
action classification but can be obtained without human re-
gion localization. While human localization is not trivial,
local features extracted from the region of a person of in-
terest are beneficial for action classification. For videos, for
example, several kinds of bag-of-words representations are
tested in [9] in order to find discriminative local features for
simultaneous human localization and action classification.
Human-region localization in still images requires more dis-
criminative features and powerful classifiers. While human
detection methods such as [10], [11] can cope with severe
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occlusion, they mainly focus on detecting upright people as
a bounding box, in which the detailed silhouette of a per-
son is not specified. A detailed silhouette can be found by
human pose estimation, which is described in what follows.

A human body pose in images can be defined by a
deformable part model (DPM), e.g. [12], [13]. The model
consists of nodes and links, which respectively correspond
to a part and a geometric relationship between parts. Hu-
man pose estimation using DPMs has been extended in var-
ious aspects, e.g. appearance features between parts [14] and
segmentation-based appearance features [15]. The part con-
figuration is a crucial cue for estimating a complicated hu-
man pose in cluttered background. In addition, a human
pose represents a human activity even in still images. That
is, human pose and action are mutually related to each other.

The contributions of this work are (i) to improve pose
estimation by multiple DPMs each of which is optimized
for each action (i.e., action-specific pose models) and (ii)
to employ an estimated pose as local features merged with
global image features for action classification. While por-
tions of this paper appeared in [16], this paper also presents
the effects of fine-grained action-specific DPMs.

2. Related Work

Contexts for action classification and pose estimation:
As well as the state of a human body, interactions between
the body and objects with regard to the activity of a person
are also useful for human activity recognition. For action
classification, for example, mutual relationships between
a human pose and objects being manipulated [17] and be-
tween action-specific body parts and objects required for the
action [18], [19] are useful. As well as object features, scene
features can be used for action classification [8]. The global
scene features can potentially represent all objects surround-
ing a person. Pose estimation can be also improved by in-
volving interacting objects in the DPM [20].

Relations between actions and poses: Action classi-
fication and pose estimation can enhance each other. Action
classification can be achieved by pose matching (e.g. 2D
pose-based matching [21], [22] in videos and view-invariant
3D pose matching in videos [23]–[25]). 3D pose-based
matching is proved empirically to be robust to noise in [25].
Intuitive examples in still images are shown in Fig. 1 (a) and
(b). These two poses are similar to each other because both
persons are hitting a shuttlecock during playing badminton.

In an opposite manner, for pose tracking in videos,
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action-specific model selection has been studied (e.g.
switching models [26], efficient particle distribution in pose
models [27], [28], unified multi-action model [29]).

Recognition in still images: Compared with recogni-
tion in videos by the aforementioned methods [23]–[29], it
is more difficult to extract discriminative features from still
images. For action classification, a large variety of body
poses might be contained in the same action class. Exam-
ples in Fig. 1, (d–g) show significantly different 2D body
poses in the same action class, baseball. The difference is
caused by the following issues. (i) Class resolution: dif-
ferent sub actions, batting and pitching, are contained in
the same class, (ii) view dependency: the same poses are
captured from different viewpoints, and (iii) classification
in still images: different moments (i.e. different poses) of
batting are contained in the baseball class. While problems
(i) and (ii) must be coped with also in videos, problem (iii)
is a unique problem in still images. In this paper, in contrast
to our previous work [16], the effectiveness of fine-grained
action-specific models (e.g. batting and pitching rather than
baseball) for the first issue is verified.

Fig. 1 Pose representation with 10 body parts. (a) and (b) are classified
to badminton, (c) is volleyball, and (d), (e), (f), and (g) are baseball.

Fig. 2 Overview. Red, green, and black arrows depict the data flows of feature vectors, model param-
eters, and estimated values, respectively. The model parameters of SVMs and DPMs are employed with
the features for action classification and pose estimation, which are performed in lefthand and righthand
dotted rectangles, respectively. While the action classifier delivers the probability estimates (denoted by
A1, · · · , ANA in the figure) of NA action classes, a DPM is prepared not for each action class but for each
action sub-class. Each DPM is used for pose estimation. Among all poses estimated by DPMs, the best
pose is selected so that it has the largest value of the product of the probability estimate of the action
classifier and the DPM score, as indicated by ⊗ in the figure. A pose feature vector, which is produced
from the selected pose, is fed back to be merged with global image features (i.e. Object Bank features) for
iterative action classification. After iteration between action classification and pose estimation is finished,
their final results are determined, as depicted by blue downward arrows.

Furthermore, one more difficulty in recognition in still
images is person localization, as tackled in [30]. This prob-
lem is more difficult than the one in videos [31], in which
motion cues can be used for foreground segmentation. This
difficulty is absent in classifying a scene, where each target
action is performed, by using global image features. Indeed,
the co-occurrence between actions and scenes is a useful
clue for mutually improving their classification [32]. Un-
like traditional approaches using only global features (e.g.
GIST [33]), more recent ones fuse multiple features and/or
classifiers; joint optimization of multiple classifiers [34], si-
multaneous classification and annotation using regional fea-
tures [35], [36], and classification using DPMs [37]. In par-
ticular, the Object Bank [38] allows us to obtain the re-
sponses to any kinds of objects including people and objects
relevant to the action, as well as background objects.

3. Overview of the Proposed Method

The overview of the proposed method is illustrated in Fig. 2.
Action classification and pose estimation are iteratively per-
formed so that (i) action classification is performed by
global features and 2D pose-based features and (ii) body
poses are estimated by fine-grained action-specific DPMs.
An action classifier and DPMs are trained with the action
labels and pose annotations of training images.

Initially (i.e., before a human pose is estimated), action
classification is executed with no human pose information.
Robust initialization is achieved by global features (denoted
by “Object Bank O” in Fig. 2) with no human localization,
as described in Sect. 4.1.

The result of action classification is used for weight-
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ing the pose estimation results of action-specific DPMs
(indicated by “Model(1, 1), · · ·, Model(NA,NS

NA )”, where
Model(X,Y) denotes a pose estimation model for Y-th sub-
class of X-th action, in the figure), as described in Sect. 4.2.
NA and NS

a denote the numbers of action classes and sub-
classes of a-th action, respectively. The total number of
DPMs is NM =

∑NA

a NS
a . Each DPM represents human

poses observed in its respective action. By dividing a vari-
ation of possible human poses into such multiple DPMs, a
variety of poses in each DPM becomes smaller. Then mod-
eling error in each DPM is reduced. Finally, only one pose
(indicated by “Best pose Pâ” in the figure) is selected from
NM poses based on the scores of action classification and
pose estimation.

In addition to action classes used in our previous
work [16], human poses in each action class are further di-
vided into sub-classes; for example, pitching and batting in
the baseball class. Each sub-class has its own action-specific
DPM. While this sub-classification (i) needs additional sub-
class tagging and (ii) reduces the amount of training images
for each sub-class, a variation in each sub-class is decreased
and fine-grained classification can be achieved.

While each action sub-class has its own DPM, all sub-
classes within their parent class share the same model of
global features for action classification. This is because sub-
actions in each class are performed in similar environments
where similar global features are observed. Therefore, the
poses of all sub-classes in a-th action class are evaluated
with the probability estimate of a-th action class in the pose
selection process mentioned above.

As well as global features, pose-based features (de-
noted by “Pose features P′â” in Fig. 2) are used for action
re-classification in iterative steps, as described in Sect. 4.3.
This is the difference from previous pose-based action clas-
sification [23]–[25].

In what follows of this section, base approaches for ac-
tion classification [38] and pose estimation [39], which are
used in the proposed method, are described.

3.1 Action Classification Using Global Features

The Object Bank [38] provides a set of high-level image
features with scale-invariant response maps of a variety of
generic object detectors. The response maps are normal-
ized so that the Object Bank features have fixed dimension
regardless of the image size. 177 object detectors, which
are provided by its author’s codes, are used in our imple-
mentation. In total, the size of the Object Bank features is
44604-dimension; 252 D/object × 177 objects = 44604 D.
The Object Bank features are extracted from each image and
used with a classifier (e.g. SVM) for action classification.

3.2 Pose Estimation Using DPMs

A tree-based model is defined by a set of nodes, V, and a set
of links, E, each of which connects two nodes. Each node
has its pose parameters (e.g. x and y positions, orientation θ,

and scale s) that localize the respective part. By optimizing
the pose parameters in accordance with a human pose in an
image, pose estimation is achieved. The pose parameters are
optimized by maximizing the score function below:

T (P) =
∑

i∈V
S i(pi) +

∑

i, j∈E
Pi, j(pi, pj), (1)

where pi and P denote a set of the pose parameters of i-
th part and a set of pi of all parts (i.e. P =

[
p1, · · · , pNV

]T ,
where NV denotes the number of nodes).

In our experiments, a pose estimation method proposed
in [39] is employed. In [39], a unary term S i(pi) in (1) is an
appearance-based similarity score of i-th part at pi. φ(pi) and
Fi denote a local image patch in pi and the i-th part’s score
function optimized by a deep convolutional neural network
(DCNN) [40], respectively. The DCNN for Fi is trained so
that it outputs a greater value if its input patch φ(pi) is simi-
lar to the appearance of i-th part. A pairwise term Pi, j(pi, pj)
is a set of a spring-based score and an image-dependent pair-
wise score, both of which have a greater value if the relative
configuration of pi and pj is highly probable. Pi, j(pi, pj) is
jointly optimized by the DCNN used in optimizing Fi.

These two functions, S i(pi) and Pi, j(pi, pj) are trained
properly with sample images where the pose annotations of
all parts are given. This training is achieved by the struc-
tured SVM [39], [41] in our implementation so that it opti-
mizes the pose annotations of the training data.

4. Iterative Action Classification and Pose Estimation

4.1 Initial Action Classification with High-Dimensional
Global Features

Initial action classification is achieved by employing only
Object Bank features. This initial classification is performed
with the original dimension of the Object Bank features (de-
noted by O) for achieving classification as accurate as possi-
ble. A SVM classifier [42], [43] gives us not only the action
class of O but also its probability estimate Aa denoting the
probability to belong to a-th action as proposed in [44].

Note again that all action classification processes, in-
cluding this initial one as well as iterative ones, are achieved
in terms of action classes rather than their sub-classes.

4.2 Pose Estimation by Fine-Grained Action-Specific
DPMs and Action Probability

The result of action classification is employed for pose se-
lection from human poses estimated by multiple action-
specific DPMs. The action-specific DPM is defined for each
action sub-class (i.e. fine-grained class). The representa-
tion of each fine-grained action-specific DPM is completely
same with that of a general DPM described in Sect. 3.2.

However, the learning scheme of fine-grained action-
specific DPMs is modified from original one [39] so that
all DPMs in an action class share a step for initializing the
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Fig. 3 Learning DPMs in an action class. Initially, the appearance of
each part is trained with images of all sub-classes in Step-1. In Step-2, the
DPM of each sub-class is modeled independently.

parameters of part-similarity functions, S i(pi) in score (1).
Originally in [39] and our previous work [16], these param-
eters in each DPM are initialized with training images of
only this DPM. While this training works well if a number
of training images is given to this DPM, each action sub-
class has a smaller number of training images in the pro-
posed method. Our assumption to solve this problem is that
(i) the appearance of parts is not significantly changed be-
tween action sub-classes but (ii) the configuration of parts
(i.e., human pose) has a large variation between action sub-
classes. Based on this assumption, (i) the training images
of all sub-classes in each action are used for initializing the
appearance parameters in score (1), S i(pi), as illustrated in
Step-1 in Fig. 3. Then, (ii) for the DPM of each sub-class,
all parameters in score (1) are jointly optimized using the
initialized S i(pi) with training images of only this sub-class,
as illustrated in Step-2 in Fig. 3.

Assume that NM action-specific DPMs (denoted by
“Model(1, 1), · · ·, Model(NA,NS

NA )” in Fig. 2), where NM

denotes the number of all action sub-classes, are given. For
each test image, the proposed method obtains NM poses,
each of which has the top score (denoted by saf in f -th sub-
class model of a-th action) in each model. With saf and the
probability estimate of a-th action, Aa, the best pose (de-
noted by “Best pose Pâ” in Fig. 2) is selected so that:

â = arg max
a, f

(saf Aa) (2)

While previous clustered models [45], [46] have no
weights between different models, the proposed method has
the benefit that the probability estimate of an action gives
the weight to each model as shown in Eq. (2).

4.3 Action Classification with Global and Pose Features

For action classification, the absolute positions of parts in an
image (Pâ), which are obtained by pose estimation, should
be changed to be invariant to human location and scale in
an image. In our method, Pâ is changed to the following
expression, P′â (denoted by “Pose features P′â” in Fig. 2):

P′â = [x<â,1> −Cx, y<â,1> −Cy, · · · ,

x<â,NV> −Cx, y<â,NV> −Cy]
T , (3)

where x<â,i> and y<â,i> denote x-y positions of i-th part in
Pâ. (Cx,Cy) is the center of all x<â,i> and y<â,i>. P′â rep-
resents the normalized relative positions of parts with re-
spect to (Cx,Cy). In the body model with 26 parts, P′â is
26 × 2 = 52D. The pose features (3) are robust to a partial
change in the pose of the whole body because the relative
position between a parent and its child parts is independent
from that between other parent and child parts.

The pose features (3) are used with the global features
(i.e. Object Bank features, O) for action re-classification.
Based on experimental results in our previous work [16],
these two features are combined so that they are concate-
nated, [OT P′Tâ ]T . This feature vector is then employed
for action classification and probability estimation by multi-
class SVM [42], [43], as with initial action classification.

With the newly estimated probabilities, pose estima-
tion is executed again. Iteration between pose estimation
(Sect. 4.2) and action classification (Sect. 4.3) is performed
like the hard EM algorithm, where action classification and
pose estimation are respectively regarded as the E and M
steps, observed data are global features, latent variables are
action classification probabilities and action-specific mod-
els, and unknown parameters are the pose parameters of the
whole body.

5. Experiments

We tested the proposed method with the LEEDS
sports (LSP) dataset [45] and the LSP extended training
dataset [46], in which 2000 and 10000 pose-annotated im-
ages are included, respectively. In all comparative experi-
ments in this section, 1000 images in the LSP were used for
evaluation. All images were automatically collected from
Flickr based on keywords related to the following sports:
athletics, badminton, baseball, gymnastics, parkour, soccer,
tennis, and volleyball. Since the keywords were provided
by Flickr users as they like, several images are not related
to any of the above eight sport classes: for example, a sit-
ting audience at a stadium. These non-sport images have
a ninth action class, “general” in our experiments, because
the objective of action-specific models is to precisely repre-
sent the pose variation triggered by each action. Each image
was manually annotated by one of the nine action classes†.
Figure 4 shows examples of the nine classes. The number
of sample images clustered to each action class is listed in
Table 1.

Action classes in Table 1 are divided into sub-classes as
shown in Table 2. While body poses included in gymnastics
and parkour classes can be classified to several sub-classes,
these poses are captured from a variety of orientations (e.g.
from below and above a person) and the configurations of
x − y body joint coordinates are not clustered even in such a
sub-class. So all images of gymnastics and parkour classes
are included in one sub-class, “Others”.

†The action annotations are available in the author’s website.
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Fig. 4 Sample images of nine action classes. The cropped window of a target person is shown.

Table 1 The number of images of each action class in training and test data. While the training dataset
includes 1000 LSP images and 10000 LSP extended images (“LSP + LSP extended” in the Table), the
test dataset consists of 1000 images of the LSP.

Athletics Badminton Baseball Gymnastics Parkour Soccer Tennis Volleyball General
Train 33+542 130+0 159+101 29+2904 74+5643 127+15 98+1 76+4 274+790
Test 46 127 137 40 88 125 93 87 257

Table 2 The number of training and test images of sub-classes.

(1) Athletics Running Jumping Others (5) Parkour – – Others
Train 29+100 3+388 1+54 Train – – 74+5643
Test 45 0 1 Test – – 88

(2) Badminton Waiting & Downswing Upswing & Serve Others (6) Soccer Running Shot Others
Train 72+0 37+0 21+0 Train 65+0 34+1 28+8
Test 84 32 11 Test 73 14 38

(3) Baseball Batting Pitching Others (7) Tennis Waiting & Receiving Serve & Smash Others
Train 38+4 45+38 76+59 Train 55+1 22+0 21+0
Test 35 38 64 Test 45 34 14

(4) Gymnastics – – Others (8) Volleyball Waiting & Receiving Serve, Smash & Blocking Others
Train – – 29+2904 Train 16+4 32+0 28+0
Test – – 40 Test 34 35 18

(9) General – – Others
Train – – 274+790
Test – – 257

Fig. 5 Comparison of classification performance of different classifiers
in initial action classification with high-dimensional and compressed Ob-
ject Bank features.

The following two models were obtained in training:

• Multi-class SVM for action classification: Nonlin-
ear [43] and linear [42] SVMs were tested.
• Action-specific DPMs of all action sub-classes: Each

DPM was implemented based on [39]. The appearance
feature of this base model is trained with DCNNs.

The results of initial action classification only with
the Object Bank features are shown in Fig. 5. For each of

the nonlinear and linear SVMs, high-dimensional and com-
pressed Object Bank features were tested. The dimension of
the compressed features was 400, which was around 1% of
the high-dimensional one. While the compressed features
could get nice results as with the results of scene classifi-
cation reporter in [38], the high-dimensional features were
better than the compressed one.

After action classification, the probability estimate of
each action class is used in pose selection from multiple
DPMs. As shown in Fig. 5, the results of action classifi-
cation were not enough high to identify the action class of
each test image. That is, in many test images, the probabil-
ity estimate of a correct class was not the max score among
all classes. However, even if the probability estimate of a
correct class is not the max score, it gives a useful clue to
pose selection if the following two conditions are satisfied:

1. The probability estimate of a correct class is not much
lower than the max score.

2. The probability estimate of a correct class is relatively
higher than the scores of other classes.

The evidences of the first condition mentioned above
is shown in Fig. 6. Figure 6 shows the mean of pcor/pmax,
where pcor and pmax denote the probability estimate of a
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Table 3 Quantitative comparison using test data in the LSP dataset and the strict PCP metric [47],
[48]. Our method used [39] for each DPM. We used the person-centric annotations given in [46].

Torso Upper-Leg Lowe-Leg Upper-Arm Lower-Arm Head Total

(a) Ours (final iteration) 97.5 90.6 85.5 83.9 71.2 88.9 84.9
(b) Ours (first iteration) 97.1 89.1 82.2 80.7 68.9 88.6 82.8
(c) Our previous [16] 87.3 74.7 68.5 54.1 36.9 77.9 63.4
(d) Chen & Yuille [39] 96.0 77.2 72.2 69.7 58.1 85.6 73.6
(e) Wei et al. [49] 96.9 85.6 81.6 78.1 66.4 94.0 81.4
(f) Yu et al. [50] 98.0 93.1 88.1 82.9 72.6 83.0 85.4
(g) Rafi et al. [51] 97.6 87.3 80.2 76.8 66.2 93.3 81.2

Fig. 6 Comparison of probability estimates of correct classes versus
classes having the max scores in initial action classification.

Fig. 7 Comparison of probability estimates of correct classes versus
other classes in initial action classification. Nonlinear SVM with high-
dimensional features was used. The mean probability of the other classes
is shown in the graph (indicated by red bars).

correct class and the max score of all probability estimates
in each image, respectively. It can be seen that (i) non-
linear SVM with high-dimensional features (indicated by
blue bars) were superior to other classifiers and (ii) in many
classes, pcor was not much lower than pmax (at least, 60%
of pmax) by using nonlinear SVM with high-dimensional
features. Therefore, nonlinear SVM with high-dimensional
features were used for obtaining sa in Eq. (2) in the follow-
ing experiments.

The second condition mentioned above is verified in
Fig. 7. Figure 7 shows the mean of pavr/pmax, where pavr de-
notes the mean of probability estimates of all classes except
a correct class in each image, estimated by nonlinear SVM
with high-dimensional features. In addition to pavr/pmax (in-
dicated by red bars in Fig. 7), pcor/pmax is also indicated by
blue bars for comparison. It is clear that pcor was higher
than other scores.

The quantitative results of pose estimation are shown
in Table 3. The accuracy is evaluated by the PCP (percent-
age of correctly estimated parts) [47]. The final result of

our method was obtained after two iterations between ac-
tion classification and pose estimation. The iteration was
executed only twice because of the following two reasons:

• In general, repeated iterations cause overfitting in the
EM-like algorithm.
• Both action classification and pose estimation almost

converged in the second iteration. In particular, the it-
erative steps had less impact on pose estimation. This
is because the probability estimate of a correct action
class is significantly better than those of other classes
even in the first iteration (as shown in Fig. 7). On the
other hand, action classification was improved in iter-
ations because pose features are added for this action
classification.

The accuracy of the proposed method is better than our
previous method (i.e., (a) > (c) in Table 3). The iterative
scheme improved the performance (i.e., (a) > (b) in Table 3).
It can be also seen that the proposed method outperforms or
comparable with state-of-the-art methods, (e), (f), and (g).
In particular, the effectiveness of our proposed method can
be confirmed by comparing results between the proposed
method and its base method, (d); the improvement in Total
is 84.9 − 73.6 = 11.3%.

Since all images of action classes 1 to 8 were captured
in sport scenarios, many people wear uniforms except the
parkour class where most people wear no clothes, which re-
sult in less appearance variation. In class 9 (i.e., general
class), people wear various kinds of clothes. While the uni-
formity and diversity of the body appearance affect the ap-
pearance score in (1), it can be seen that pose estimation ac-
curacy in parkour class is the worst as shown in Table 3. Our
interpretation of this observation is that the specific appear-
ance variation in the sport scenarios may have less impact
than the variation of a body configuration.

The effect of action classification on pose estimation is
verified by improvement on pose estimation. If the pose esti-
mation score of a correct/incorrect pose has the largest value
but is exceeded by another/correct pose using the probabil-
ity estimate of unsuccessful/successful action classification,
its effect is regarded as negative/positive. While unsuccess-
ful classification gives a negative impact on pose estimation
accuracy (−1.3%), a positive impact by successful classifi-
cation (4.2%) is larger.

Figure 8 shows several typical examples of estimated
poses. The results of the base method [39] and our previous
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Base method [39]

Our previous method [16]

Our proposed method

Fig. 8 Pose estimation results. The window of a target person was
cropped from its original image and shown in this figure. (Top) a base
method [39], (Middle) our previous method, in which action-specific DPMs
are used, and (Bottom) the proposed method using fine-grained action-
specific DPMs. The number of correctly localized parts is shown under
each result. All of the images were selected from gymnastics and parkour
classes, where human poses are significantly different from natural upright
poses.

method with only action-specific DPMs [16] are also shown.
As shown in these examples, our methods were successful in
particular in gymnastics and parkour in contrast to the base
method [39]. This is because the body poses of these actions
are significantly different from those of other actions, but the
variety of poses in each action was represented well by the
proposed action-specific DPMs.

Finally, the results of action classification using Object
Bank features with pose features are shown in Fig. 9. Red
and green bars show the results of our previous work [16]
and the proposed method with action sub-classes, respec-
tively. The results were obtained after two iterations be-
tween action classification and pose estimation. For com-
parison, the initial classification results of the proposed
method are also indicated by blue bars. From Fig. 9, it can
be seen that the proposed method improved the classifica-
tion accuracy from our previous work [16]. This improve-
ment must be obtained due to better pose features because
the global features used in our previous work [16] and the
proposed method were identical.

Fig. 9 Comparison of action classification performance of different clas-
sifiers. While initial classification (“Initial” in the figure) was achieved only
with the Object Bank features, other two results were obtained by pose fea-
tures with Object Bank features. These results were obtained by nonlinear
SVM after twice-iterated action-and-pose recognition.

For comparison, the classification results of the state-
of-the-art using DCNNs [6] are also shown in Fig. 9. In
our experiments, top 1000 regions extracted by selective
search [52] were used as region proposals for [6]. While this
method [6] achieves a high performance gain in most action
classes, the gain in the general class is relatively small. This
may be because of a huge variety of image appearances in
the general class. Note that, this method [6] and our pro-
posed method is not compared on a fair basis. This is be-
cause this method [6] uses the ground-truth bounding box
of a target person while our proposed method is designed
not to require the bounding box both in training and testing
phases. However, using DCNN-based action classification
should be regarded as important future work for improving
not only pose estimation but also action classification by the
proposed joint-utilization of image and pose features.

The contributions of the proposed method validated in
the experimental results are summarized as follows:

• The effectiveness of fine-grained action-specific DPMs
are proved compared not only with state-of-the-art pose
estimation methods but also with our previous action-
specific DPMs [16] with no fine-grained modeling, as
shown in Table 3 and Fig. 8.
• Pose features improve action classification as shown in

Fig. 9.

6. Concluding Remarks

This paper proposed an iterative method for human action
classification and pose estimation in still images. These ac-
tion classification and pose estimation enhance to each other
so that action classification is improved by pose features
with global appearance features, and pose estimation is aug-
mented by fine-grained action-specific DPMs.

Future work includes (i) joint optimization of multiple
DPMs that share the basic structure of a human body and
(ii) more discriminative pose features that are robust to the
change in a viewpoint. The former is useful for improving
pose estimation even if a small number of training images
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are given in each action sub-class. The latter enables more
correct action classification. While the proposed method re-
quires manually-given action labels, unsupervised learning
of these action labels (e.g. [53]) is an interesting topic.

As described in the summary of experiments, using
DCNNs for more discriminative appearance features in ac-
tion classification as well as in pose estimation is also an
important research direction.

A known disadvantage of the proposed method is that
the number of pose estimation models (i.e., PSMs) increases
as the number of action classes increases. While all pose es-
timation models work in parallel, this parallel estimation is
impossible if we have a huge number of action classes. In
particular, only a limited number of pose estimation models
can be used in parallel if the models employ DCNNs. This
is because the memory on a GPU used by DCNNs is limited.
To cope with this problem, exploring efficient pose estima-
tion models using less memory is also an important future
work.
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[47] V. Ferrari, M.J. Marı́n-Jiménez, and A. Zisserman, “Progressive
search space reduction for human pose estimation,” In CVPR,
pp.1–8, 2008.

[48] L. Pishchulin, A. Jain, M. Andriluka, T. Thormählen, and B. Schiele,
“Articulated people detection and pose estimation: Reshaping the
future,” In CVPR, pp.3178–3185, 2012.

[49] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolu-
tional pose machines,” In CVPR, pp.4724–4732, 2016.

[50] X. Yu, F. Zhou, and M. Chandraker, “Deep deformation network for
object landmark localization,” In ECCV, vol.9909, pp.52–70, 2016.

[51] U. Rafi, B. Leibe, J. Gall, and I. Kostrikov, “An efficient
convolutional network for human pose estimation,” In BMVC,
pp.109.1–109.11, 2016.

[52] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M.
Smeulders, “Selective search for object recognition,” International
Journal of Computer Vision, vol.104, no.2, pp.154–171, 2013.

[53] J.C. Niebles, H. Wang, and F.-F. Li, “Unsupervised learning of hu-
man action categories using spatial-temporal words,” International
Journal of Computer Vision, vol.79, no.3, pp.299–318, 2008.

Norimichi Ukita is a professor at the gradu-
ate school of engineering, Toyota Technological
Institute, Japan (TTI-J). He received the Ph.D.
degree in Informatics from Kyoto University,
Japan, in 2001. After working for five years
as an assistant professor at NAIST, he became
an associate professor in 2007 and moved to
TTI-J in 2016. He was a research scientist of
PRESTO, JST during 2002–2006. He was a vis-
iting research scientist at Carnegie Mellon Uni-
versity during 2007–2009. His main research in-

terests are multi-object tracking and human pose and activity estimation.

http://dx.doi.org/10.1145/1015330.1015341
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.5244/c.24.12
http://dx.doi.org/10.1109/cvpr.2011.5995318
http://dx.doi.org/10.1109/cvpr.2008.4587468
http://dx.doi.org/10.1109/cvpr.2016.511
http://dx.doi.org/10.1007/978-3-319-46454-1_4
http://dx.doi.org/10.5244/c.30.109
http://dx.doi.org/10.1007/s11263-007-0122-4

