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Abstract

This paper proposes smoothness-constrained globally-optimal tracking of objects. Unlike previous globally-optimal tracking meth-
ods, the proposed method can evaluate the smoothness of object trajectories so that the smoothness at a frame can (1) be computed
from object detections between the frame and any other frame (e.g., detections even between a long time-interval) and (2) be eval-
uated simultaneously with multiple neighboring frames. The former and latter properties are called high-order smoothness and
high-order constraints, respectively. The high-order smoothness allows us to evaluate the smoothness robustly against noise in
detections. The high-order constraints are useful because tracking optimization gets more stable as constraints increase in number.
Moreover, smoothness can be evaluated between detections at each frame (i.e., framewise optimization) rather than between short
tracks, each of which consists of detections at subsequent frames. Globally-optimal tracking is achieved on a graph where each
node corresponds to a detected object region so that detected regions are temporally connected through frames in order to find
optimal tracking paths. It is difficult for previous globally-optimal methods to use dynamic features (e.g., velocity), which are
required to evaluate smoothness between frames. This is because different tracking paths passing through a node require this node
to have inconsistent dynamic features. That is, since the different tracking paths in a graph correspond to spatially-different paths in
a scene, each of the different tracking paths has its own dynamic feature at this intersection node. These inconsistent features at the
intersection node are prohibited for global optimization on a graph. In the proposed method, such a node is divided such that each
divided node has a unique dynamic feature. With public datasets, the proposed method can improve the rate of successful tracking.
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1. Introduction

Globally-optimal tracking [30, 7, 43, 24, 35, 6] tracks all
objects by connecting their detected regions through frames.
This tracking can acquire the mutually-consistent trajecto-
ries of the objects by minimum-cost path search on a graph
and can work quickly using integer linear programming (ILP)
[41, 42, 19, 4, 26, 29, 8].

For connecting the object regions consistently, a cost for this
optimal path search is designed so that the attributes of con-
nected object regions are consistent. For example, the consis-
tencies of positions are evaluated in most conventional globally-
optimal tracking methods; closer regions are connected be-
tween consecutive frames. As well as this position closeness,
motion smoothness is also a critical cue for connecting the ob-
ject regions consistently. In particular, motion smoothness is
indispensable for tracking objects with similar appearance [15]
such as people observed by a distant camera used for surveil-
lance. With no smoothness, people passing each other, such as
those shown in Fig. 1, are often miss-tracked (the third image
from the left in Fig. 1).

Such miss-tracking occurs in tracking using ILP because ILP
evaluates the consistency of object regions only between two
consecutive frames. In other words, a graph in ILP has links
only between a pair of nodes, each of which corresponds to an
object region, in two consecutive frames. We call this limitation
the first-order link. This limitation is required for efficient op-
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Figure 1: Effects of evaluating motion smoothness. The color of each rectangle
indicates the tracking ID of each person. While a previous method may fail
tracking people passing each other, they can be tracked successfully by evalu-
ating motion smoothness.

timization by the dynamic programming or similar techniques.
The disadvantage of the first-order link limitation is that it

disables evaluation of motion smoothness but allows us to em-
ploy only position smoothness between nodes. This is because
a cost between two nodes is defined with only their features but
each node has only the static features (e.g., position and color)
of its object region while dynamic features (e.g., velocity) are
required in each node for evaluating motion smoothness (abbre-
viated to smoothness in what follows).

The first-order link limitation also disables evaluating sim-
ilarity (e.g., closeness and smoothness) between a node and
other two or more nodes in a tracking path. For example, for
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1st-order smoothness 2nd-order smoothness

t =1 t =2 t =3 t =4

Big difference Small difference

Figure 2: Advantage of high-order smoothness. The first-order smoothness
(i.e., directed velocities computed by connecting detected regions in two con-
secutive frames, which are indicated by arrows in the left-hand figure) is noisy,
as marked by “Big difference”, due to noisy detected regions. On the other
hand, the variance of the high-order smoothness (e.g., second-order smooth-
ness in the right-hand figure) is smaller and useful for cues in tracking.
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Figure 3: (Upper row) first-order smoothness and (Middle and lower rows)
simple but inefficient/intractable high-order constraints. Each link (i.e., arrow)
has a cost of dissimilarity between dynamic features in two nodes connected
by the link. The second-order smoothness, which is indicated by red links, is
evaluated between t-th and (t + 2)-th frames (i.e., “t=1 and t=3” and “t=2 and
t=4” in the figure). The second-order constraints are evaluated by connecting
t-th frame with other two frames (e.g., (t + 1)-th and (t + 2)-th frames), as
illustrated in the lower example.

evaluating a tracking path from t = 1 to t = 4 in Fig. 2, if
similarity is evaluated between t = 1 and t = 2 by linking their
corresponding nodes, a node at t = 1 cannot have any link that
connects to nodes in other frames (i.e., t = 3 and t = 4). How-
ever, similarity evaluation among multiple frames may improve
robustness in globally-optimal tracking in analogy with other
computer vision problems using higher-order markov random
field (e.g., high-order graph cut [20, 18]).

The contribution of this paper is the extension of a graph for
smoothness-constrained globally-optimal tracking. To employ
constrains on smoothness in a more flexible way rather than
limited first-order smoothness [32, 38, 40, 10, 11], the proposed
method is possessed of the following properties while maintain-
ing the first-order link limitation in a graph:

• High-order smoothness is evaluated by a dynamic fea-
ture computed from a pair of nodes in any frames. In this
paper, a dynamic feature computed from nodes in t-th and
(t + k)-th frames is called a k-th-order dynamic feature of
t-th frame; k ∈ N is an arbitrary positive integer. Smooth-
ness evaluated by k-th-order dynamic features is called k-
th-order smoothness. Examples of first- and second-order
directed velocities (i.e. dynamic features) are indicated by
arrows in Fig. 2. Under this definition, position close-
ness employed in most globally-optimal tracking methods
is defined as 0-th order smoothness.

High-order smoothness is useful rather than first-order
smoothness, while first-order smoothness is noisy. As can
be seen in the example shown in Fig. 2, noisy directed
velocities in first-order smoothness can be stabilized by
second-order smoothness. Tracking paths are optimized
by employing constraints on smoothness so that the dy-
namic features of detections are smooth along each track-
ing path.

• High-order constrains are evaluated such that any num-
ber of constraints on smoothness in a node are evaluated
along a path simultaneously. Multiple constraints in a node
are evaluated by linking this node to nodes in multiple
frames; see the third row in Fig. 3, for example. With
high-order constraints, minimum-cost path search is con-
strained by smoothness from a frame of interest, time t,
to multiple frames. That is, a set of k1-th, · · ·, kl-th-order
smoothness is evaluated simultaneously to optimize each
tracking path. k1, · · · , kl are l arbitrary different positive
integers, where kp � kq for any pair of p and q. In this
paper, such constraints with l dynamic features are called
l-th-order constraints.
The difference between high-order smoothness and con-
straints is illustrated in graphs in Fig. 3. First-order and
second-order smoothness are indicated by blue and red
links, respectively. Since each node in the upper two
graphs has only one constraint (i.e., one link), they are
constrained only by first-order constraints. On the other
hand, each node in the bottom graph with second-order
constraints has two links.

• Framewise smoothness is evaluated with no tracklets
(i.e., short tracks) of objects. That is, each node corre-
sponds to an object region detected at each frame, while
each tracklet corresponds to a node in tracklet-based meth-
ods. Since tracklets are obtained by conventional tracking
methods, miss-tracking is inevitable in the tracklets even
if they are obtained within only frames where no occlu-
sion between detected objects is occurred. Framewise op-
timization allows us to avoid negative effects due to such
a preprocess (i.e., inevitable miss-tracking in tracklets).

2. Related Work

While recent globally-optimal tracking methods using ILP
[42, 19, 4, 26, 29] enable efficient optimization compared
with earlier work [17], their computational complexity, i.e.,
O(T 3log2T ), strongly depends on the number of frames (de-
noted by T ). Thus it is difficult to use such methods for a long
sequence. Pirsiavash et al. [31] successfully reduced this com-
putational complexity to O(KT ) where K denotes the number
of objects. This method allows us to achieve globally-optimal
tracking in long sequences.

However, in most globally-optimal tracking methods, nodes
are connected only between two consecutive frames. Due to
this first-order link limitation, only static cues (e.g., object po-
sition and scale) extracted from each frame are used to evaluate
the connectivity between nodes.
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A few globally-optimal tracking methods [32, 38, 40, 10, 11]
introduce constraints on smoothness under the first-order link
limitation. In [32, 38, 40, 10], smoothly-connected regions
(i.e., a tracklet obtained by pre-processing) constitute a node
in a graph. While dynamic features can be computed in each
node and motion similarity can be evaluated between two con-
secutive nodes, miss-tracking in tracklets is inevitable. With no
tracklets, Butt and Collins [11] evaluate the first-order smooth-
ness between two consecutive frames. This is achieved by (1)
merging any pair of regions detected in two consecutive frames
into a node and (2) connecting such nodes by hyperlinks rep-
resenting constraints that must be enforced so that each region
is used only once. Since a graph with these hyperlinks requires
complex optimization, approximate and computationally-huge
optimization is used. While the first-order smoothness in a
graph is used also in [14] with constant-velocity terms in a
cost function, this method also requires an approximate solu-
tion method based on the iterated conditional modes algorithm,
which requires significant time for convergence. In addition,
the first-order smoothness [11, 14] is not so reliable due to noisy
detections, as shown in Fig. 2.

In summary, the proposed method can apply high-order
smoothness and constraints to a graph while maintaining the
first-order link limitation. In addition, constraints on smooth-
ness can be evaluated framewise such that each node corre-
sponds to an object region rather than a tracklet.

In terms of similarity evaluation between detections, not only
spatial features such as motion smoothness and position close-
ness but also appearance features are crucial for visual tracking.
Globally-optimal tracking can employ any kinds of features in-
dependently by adding the similarity score of each feature to a
link between the nodes corresponding to the detections. On the
other hand, fusion of the features at the level of visual informa-
tion can improve similarity evaluation. While the effectiveness
of the visual-level fusion has been demonstrated in eariler work
(e.g., for multi-target tracking [13] and single-object tracking
[12, 21]), our implementation of the proposed method evalu-
ates all features independently so that this work focus on how
to extend a graph for smoothness-constrained globally-optimal
tracking; Sec. 4, for more details.

3. Graph with Constraints on Smoothness

An original graph used for globally-optimal tracking is illus-
trated in Fig. 4; see its caption for details. Each inter-frame link
has several costs relating to similarity between a pair of nodes
connected by the link. For example, a cost relating to position
closeness (i.e., cost of 0-th order smoothness) is given to each
inter-frame link in previous globally-optimal methods as well
as in our proposed method.

A cost function evaluating a set of tracking paths T (denoted
by C(T)) is as follows2:

C(T) =
∑

i

Cs
i f s

i +
∑

i

Ct
i f t

i +
∑

i

Ci fi +
∑
i, j

Ci, j fi, j,(1)

2For more details of this cost function, refer to [42, 31].

s

t
t=1 t=2 t=3

Figure 4: Example of a graph with first-order links. The graph consists of
nodes, intra-frame links (indicated by red arrows), and inter-frame links (in-
dicated by blue arrows). A pair of nodes connected via an intra-frame link
corresponds to a detected object region. The intra-frame link has a cost of the
detection of each object. An inter-frame link connects a pair of nodes between
two consecutive frames. Each inter-frame link has several costs representing
dissimilarity between two object regions. In this graph, paths with a lower cost
are searched for and considered to be object paths (i.e., tracking results). For
simplicity, two nodes connected by an intra-frame link are merged for visual-
ization in the subsequent figures.

subject to the following equations:

f s
i +

∑
j

f j,i = fi = f t
i +

∑
j

fi, j, (2)

where Cs
i , Ct

i , Ci, and Ci, j denote costs given to a link from s-
node to i-th node, a link from i-th node to t-node, an intra-frame
link of i-th node, and an inter-frame link between i-th and j-
th nodes, respectively. f s

i , f t
i , fi, and fi, j denote 0-1 indicator

variables defined as follows:

• f s
i is 1 if ∃Tt ∈ T where path Tt starts from i-th node.

Otherwise, f s
i is 0.

• f t
i is 1 if ∃Tt ∈ T where path Tt ends at i-th node. Other-

wise, f t
i is 0.

• fi is 1 if ∃Tt ∈ T where path Tt includes i-th node. Other-
wise, fi is 0.

• fi, j is 1 if ∃Tt ∈ T where path Tt includes a link between
i-th and j-th nodes. Otherwise, fi, j is 0.

If and only if the constraint expressed by Eq. 2 is satisfied, any
pair of paths in T has no overlap.

Globally-optimal tracking methods by minimum-cost path
search on a graph, including our proposed method, produce
tracking paths by connecting object detections. Since such
globally-optimal tracking methods cannot track false-negative
detections, these false-negatives should be reduced by a loose
threshold in detection stage. While the loose threshold pro-
duces a number of false-positive detections, the globally-
optimal tracking methods extract true-positive tracking paths by
optimizing the cost function, Eq. (1), rather than assume all de-
tections are true. Additional schemes for explicitly expressing
long-term occlusions in optimization and for removing false-
positive trajectories after optimization, as described in [42].

3.1. Smoothness Cost
In such a graph, k-th-order smoothness is evaluated with a k-

th-order dynamic feature computed between nodes in t-th and
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Figure 5: Smoothness cost. Each node corresponds to a detected object region.
Balloons with a node and a link show the directed velocity of this node and the
cost given to this link, respectively. The costs shown in this figure are those of
tracking paths toward N3,1.

(t + k)-th (k ∈ N) frames. In this paper, this dynamic feature
is expressed by a directed velocity in each node. Let Nt,i, Pt,i,
and v(k)

t,i denote i-th node in t-th frame, the position of an ob-
ject that corresponds to Nt,i, and its k-th-order directed velocity,
respectively. Note that object IDs, i, are given for each frame
independently prior to tracking; Nt,i and Nt+1,i may correspond
to different objects. With these notations, v(k)

t,i can be approxi-
mately computed as follows:

v(k)
t,i =

−−−−−−−→Pt,i Pt+k,m

k
=

Pt+k,m − Pt,i

k
, (3)

where m ∈ N denotes the ID of (t + k)-th frame’s node connect-
ing to Nt,i.

In this paper, the cost of smoothness between nodes in t-th
and (t + l)-th frames is given by subtraction between v(k)

t,i and
v(k)

t+l, j defined in Eq. 3:

c(k, t, i, t + l, j) = ||v(k)
t,i − v(k)

t+l, j|| (4)

Figure 5 shows the simple examples of directed velocities
and costs with k = 1 and l = 1.

3.2. Node Division for Constraints on Smoothness
While the cost of smoothness between nodes in any pair of

frames is defined by Eq. 4, v(k)
t,i is changed depending on Pt+k,m

(i.e., depending on which node in (t + k)-th frame is connected
to Nt,i). For example, at 1st frame of Fig. 5, the first-order dy-
namic features of N1,1 and N1,2 (i.e., −−−−−−→P1,1P2,1 and −−−−−−→P1,2P2,1) are
fixed. At t = 2, on the other hand, N2,1 has −−−−−−→P2,1P3,1 or −−−−−−→P2,1P3,2

as its dynamic feature. This variability prevents us from at-
tributing dynamic features to a graph for minimum-cost path
search.

In the proposed method, this variability of the dynamic fea-
tures is removed by dividing nodes having variable features into
sub-nodes each of which has only unique features, as illustrated
in Fig. 6. While the following sections, Secs. 3.3.1, 3.3.2, and
3.3.3, describe graph building with different orders of smooth-
ness and constrains, we define the following principle in node
division that is independent of order:

Node-division principle: A node, including a sub-node, must
have unique dynamic features. This uniqueness means a one-to-
one correspondence between a pair of nodes in t-th and (t + k)-
th frames (k ∈ N) for k-th-order smoothness; if Nt,i connects to

t=1 t=2 t=3

Figure 6: Node division for maintaining a unique dynamic feature in each sub-
node. In this example, N2,1 in Fig. 5 is divided into N1

1,2 and N2
1,2 that respec-

tively have −−−−−−−→P2,1 P3,1 and −−−−−−−→P2,1 P3,2 as a dynamic feature. Sub-nodes divided from
a node are enclosed by an orange rectangle.

�

�

t=1 t=2 t=3

Figure 7: Costs of first-order smoothness, which are obtained from three con-
secutive frames (i.e., t = 1, t = 2 and t = 3), are computed by Eq. (4) and given
to links between t = 1 and t = 2.

Nt+k, j, there is no path from Nt,i to any nodes in (t + k)-th frame
but the path to Nt+k, j. Thus, Nt,i has a unique dynamic feature
computed with Nt+k, j. If this requirement is violated in a node,
it is divided into sub-nodes.

3.3. Graph Building with Constraints on Smoothness

The easiest problem with only first-order constraints by first-
order smoothness is introduced in Sec. 3.3.1. Then problems
with high-order smoothness and high-order constraints are de-
scribed in Secs. 3.3.2 and 3.3.3, respectively.

3.3.1. Graph with First-order Constrains by First-order
Smoothness

A general graph (e.g., Fig. 4) in which object regions and
nodes have a one-to-one correspondence is extended as follows:

Step1: A directed velocity computed from object positions in
t-th and (t + 1)-th frames is regarded as the first-order dy-
namic feature. This directed velocity is given to a node in
t-th frame, as illustrated by −−−−−−→P1,1 P2,1 and −−−−−−→P1,2 P2,1 in Fig. 5.

Step2: If Nt,i connects to D nodes in (t + 1)-th frame, Nt,i is
divided into D sub-nodes, Nd

t,i, where d ∈ {1, · · · ,D} is a
division ID. The features given to each sub-node Nd

t,i are
the same as those of Nt,i with the exception of a directed
velocity. Nd

t,i connects to all (t − 1)-th frame’s nodes con-
necting to its original node, Nt,i. In (t + 1)-th frame, on
the other hand, Nd

t,i only connects to a node that is used to
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compute a directed velocity given to Nd
t,i. In the example

shown in Fig. 5, N2,1 must be divided because it is con-
nected to N3,1 and N3,2. Directed velocities toward P3,1

and P3,2 (i.e., −−−−−−→P2,1P3,1 and −−−−−−→P2,1P3,2) are given to sub-nodes
N1

2,1 and N2
2,1, respectively, as shown in Fig. 6. Then both

of N1
2,1 and N2

2,1 connect to N1,1 and N1,2, while N1
2,1 and

N2
2,1 respectively connect to N3,1 and N3,2.

Step3: After directed velocities are given to nodes and sub-
nodes in all frames, the costs defined by Eq. (4) are com-
puted from the directed velocities in all possible pairs of
t-th and (t + 1)-th frames. They are then given to their cor-
responding links between t-th and (t + 1)-th frames. In the
example shown in Fig. 7, each of the four links between
t = 1 and t = 2 has its own cost.

The costs of the directed velocities between t-th and (t+1)-th
frames are computed from the object positions in t-th, (t + 1)-
th, and (t + 2)-th frames. This means that a cost given to a link
between t-th and (t + 1)-th frames must correspond to only one
of the possible paths from t-th to (t + 2)-th frames. In Fig. 7,
there are four possible paths from t = 1 to t = 3, i.e., N1,1 →
N1

2,1 → N3,1, N1,1 → N2
2,1 → N3,2, N1,2 → N1

2,1 → N3,1, and
N1,2 → N2

2,1 → N3,2. As can be seen, each of the four costs
given between t = 1 and t = 2 corresponds to one of these four
paths.

3.3.2. Graph with High-order Smoothness
The pseudo code of the whole graph building is shown in

Fig. 11. The procedures SMOOTHNESS and CONSTRAINTS
called in the graph building are described in Secs. 3.3.2 and
3.3.3, respectively.

k-th-order smoothness is evaluated with k-th-order dynamic
features computed from object positions in t-th and (t + k)-th
frames. To give unique k-th-order dynamic features to a graph
based on the node-division principle, if Nt,i connects to D nodes
in (t+k)-th frame via frames between them, Nt,i must be divided
into D sub-nodes. This division makes each of the D sub-nodes
having only one of D dynamic features computed from Nt,i and
D nodes in (t + k)-th frame.

The process described above is almost the same as node di-
vision for the first-order smoothness described in Sec. 3.3.1.
The difference between these two division schemes is that, k-
th-order smoothness connects Nd

t,i to Nt+k, j via nodes between
(t + 1)-th and (t + k − 1)-th frames. These intermediate nodes
must also be divided into D sub-nodes and connected to each
other such that Nd

t,i, which has Pt+k, j−Pt,i

k as its dynamic feature,
connects to only Nt+k, j. All sub-nodes are connected such that
Nd

t,i connects only to d-th sub-nodes of each intermediate node
toward d-th node in (t + k)-th frame. Figure 8 shows the simple
example of node division for the k-th-order smoothness; k = 2.
As described in the caption of this figure, division for k-th-order
dynamic features are executed after division for (k − 1)-th dy-
namic features.

After node division and dynamic feature computation, the
costs of smoothness are given to a graph. As well as the cost of
the first-order smoothness between nodes in t-th and (t + 1)-th

�

�

�

�

�

�

t=1 t=2 t=3 t=4

Figure 8: Node division for high-order smoothness and constraints. Division
for the second-order smoothness is shown in this figure. This division is exe-
cuted following the one for the first-order smoothness, which is shown in Fig.
7. Second-order dynamic features and costs using them are indicated by gray
balloons. One-to-one correspondence between nodes at t = 1 (i.e., N1

1,1 and
N2

1,1) and those at t = 3 must be maintained for the node-division principle. To
this end, while nodes at t = 2 must be also divided, they are already divided
properly for the first-order smoothness prior to division for the second-order
smoothness.

frames, the ones of high-order smoothness between them are
embedded into a link between t-th and (t + 1)-th frames. In
the example in Fig. 8, the costs of the first- and second-order
smoothness (i.e., ||−−−−−−→P2,1 P3,1−−−−−−−→P1,1 P2,1|| and ||−−−−−−→P2,1 P4,1−−−−−−−→P1,1 P3,1||)
are embedded into the same link connected to N1

1,1. Recall that,
in a graph with k-th-order smoothness, Nd

t,i having a path to
Nt+k, j connects only to Nt+k, j in (t + k − 1)-th frame. Under
this condition, the costs of k-th-order smoothness can be given
to any link along the path from Nd

t,i toward Nt+k, j because this
path is a unique path from Nd

t,i toward Nt+k, j. In the proposed
method, these costs are given to a link between t-th and (t+1)-th
frames as described above.

The pseudo code of this node division for high-order smooth-
ness is shown in the procedure SMOOTHNESS of Fig. 12. The
example for interpreting lines 12 and 18 in this procedure is
shown in Fig. 10.

In an extended graph built by the proposed method, the num-
ber of nodes is increased only by this procedure SMOOTH-
NESS. Given the number of frames (denoted by T ) and the
mean number of nodes in each frame (denoted by Ī), the number
of nodes in an extended graph is increased from O(T I), which
is the number of nodes in its original graph, to O(T Ik+1). Note
that O(T Ik+1) is significantly smaller than O(T IT−1) that is the
number of nodes in a graph in which all possible paths between
the first and last frames are uniquely constructed by dividing
nodes Figure 9 shows why the number of nodes is O(T Ik+1)
rather than being increased exponentially, i.e., O(T IT ). In the
example shown in Fig. 9, two nodes at t = 2 increase twofold
for the second-order smoothness because “two” nodes at t = 1
require unique paths toward the nodes at t = 2. Two nodes at
t = 4 also increase twofold rather than fourfold even though the
number of sub-nodes at t = 2 is four. This is because, for ex-
ample, N1

2,1 and N2
2,1 have the same position, P2,1, and so these
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t=1 t=2 t=3 t=4

Original graph

�

�
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t=1 t=2 t=3 t=4

Extended graph with divided nodes

Figure 9: The number of nodes divided for constraints on smoothness. This
example is the case of k = 2. The upper and lower graphs show an original
graph and its extended graph, respectively.

two sub-nodes require only one sub-node for each of two nodes
at t = 3, i.e., N1

3,1 for N3,1 and N1
3,2 for N3,2.

3.3.3. Graph with High-order Constraints
High-order constraints can be implemented by high-order

links that connect a node in t-th frame to nodes in multiple
frames. Each high-order link has its cost representing the
smoothness between the dynamic features of two nodes con-
nected by this link. These high-order links are prohibited by
the limitation of the first-order link.

Rather than using these high-order links, we employ a simple
alternative in a graph with high-order smoothness that is built
by the node division described in Sec. 3.3.2. Recall that the cost
of k-th-order smoothness can be given to a link between nodes
in t-th and (t + 1)-th frames. In the example of the second-
order smoothness shown in Fig. 8, its cost is embedded with
the cost of the first-order smoothness into the same link. This
is the second-order constraints. In a graph with higher-order
smoothness (denoted by k-th-order smoothness ) also, any k′-
th-order smoothness (where 1 ≤ k′ ≤ k) can be given to a link
between t-th and (t + 1)-th frames in order to give higher-order
constraints to a graph. If all of constraints on {1, 2, · · · , k}-th-
order smoothness are given to this link, k-th-order constraints
are represented.

Note that, if a graph is built for k-th-order smoothness, the
constraints of a node in t-th frame cannot have a cost computed
with any nodes in (t + k + 1)-th frame or more distant frames.

The pseudo code for high-order constrains is shown in the
procedure CONSTRAINTS of Fig. 12.

3.4. Multi-object Tracking using Graph with Constraints on
Smoothness using Sub-nodes

Unlike the original graph, the extended graph proposed in
this paper has sub-nodes corresponding to a single object re-
gion. Since these sub-nodes are regarded as different objects in
existing globally-optimal tracking methods, these methods may
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Figure 10: This graph is generated in the loop with k′ = 2 and t = 2 of the
procedure SMOOTHNESS in Fig. 12. In this loop, N1

2,1 and N2
2,1 are generated

by dividing the former N1
2,1 (denoted by N′12,1), as well as N3

2,1 and N4
2,1 by the

former N2
2,1. Dotted rectangles indicate these former sub-nodes. In line 12 with

i = 1 and d = 1, for example, L1
1,1 includes N1

2,1 and N2
2,1 because their pre-

divided former node, N′12,1, was connected to N1
1,1. In line 18 with i = 1 and

d = 3, for example, L3
2,1, whose former ID is d′ = 1, includes (d′ = 1)-th

node of {N1
3,2, N

2
3,2} (i.e., N1

3,2) because {N1
3,2 ,N

2
3,2} was connected to N′12,1 in the

former loop.

Input: ∀t∀itNt,it � t ∈ {1, · · · , T } and it ∈ {1, · · · , It}.
1: procedure BuildGraph
2: ∀t∀it Lt,it = BuildOriginalGraph(∀t∀itNt,it ) � Lt,it is a

set of (t + 1)-th frame’s node IDs to which Nt,it connects by
links.

3: Smoothness(∀t∀itNt,it ,∀t∀it Lt,it )
4: Constraints(∀t∀it∀dNd

t,it
,∀t∀it∀dLd

t,it )
5: end procedure

Output: ∀t∀it∀dNd
t,it

, and ∀t∀it∀dLd
t,it .

Figure 11: Graph building for l-th-order constraints with k-th-order smooth-
ness. For convenience, each original node, Nt,i, is replaced by N1

t,i in Figs. 11
and 12. T and It denote the number of frames and nodes in t-th frame, respec-
tively. This algorithm is designed to build a fully-connected graph under the
first-link limitation, where all nodes in two consecutive frames are connected
to each other.

find inconsistently multiple object paths from the sub-nodes of
a single object. To avoid such inconsistent tracking paths, our
proposed method must detect only one path from the sub-nodes
of a single object on the extended graph.

This path tracking is achieved by iterative min-cost path
search [31], in which the tracking paths of multiple objects
are detected by a greedy, iterative shortest-path algorithm. For
globally-optimal tracking of objects by iterative path search,
a newly detected path edits paths detected in previous search
steps if these paths overlap the new path. This graph editing
allows us to revise previously-mistracked object paths; see [31]
for details.

Before this graph editing, the extended graph is edited so that
the sub-nodes of a single object are not included in multiple
tracking paths as follows:

1. Given a path (consisting of a set of sub-nodes, N(S )) de-
tected in r-th iteration, let N(O) be a set of original nodes
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1: procedure Smoothness(∀t∀itN1
t,it ,∀t∀it L1

t,it )
2: for k′ = 1 to k do
3: for t = 1 to T − k′ do
4: for i = 1 to It do
5: for d = 1 to Dt,i do
6: Nd

t,i is divided to It+k′ sub-nodes.
7: end for
8: end for
9: if t � 1 then

10: for i = 1 to It−1 do
11: for d = 1 to Dt−1,i do
12: Ld

t−1,i is renewed to include sub-nodes, gen-
erated in line 6, whose pre-divided former node (denoted by Mt)
was connected to Nd

t−1,i.
13: end for
14: end for
15: end if
16: for i = 1 to It do
17: for d = 1 to Dt,i do
18: Ld

t,i is renewed to include only d′-th node/sub-
node among nodes/sub-nodes that were together connected to Mt;
d′ denotes the former ID of Nd

t,i among sub-nodes generated by
dividing Mt.

19: end for
20: end for
21: end for
22: end for
23: end procedure

each of which produces one of sub-nodes in N(S ). All sub-
nodes produced from N(O), exclusive of N(S ), are not used
after r-th iteration to avoid tracking the same object mul-
tiple times. To this end, costs given to the links of these
sub-nodes are set to be infinity.

2. In addition, all links of N(S ) are edited so that these links
have negative cost with the opposite direction, as proposed
in [31].

For the aforementioned path search method to find globally-
optimal tracking paths, an assumption is that, if a sub-node of
Nt,i is included in a tracking path detected in r-th iteration, (1)
this sub-node must be included in one of optimal paths and
(2) other sub-nodes of Nt,i must not be included in any opti-
mal paths. This is because other sub-nodes of Nt,i are not used
in neither min-cost path search nor previously-mistracked path
revision after r-th iteration.

The computational cost of the iterative path search using ap-
proximate DP [31] is O(KT ) where K and T respectively denote
the unknown optimal number of objects and all frames. Since
K and T are not changed by the proposed node division, its
theoretical computational cost is maintained as O(KT ).

4. Experiments

We tested the proposed method with the public datasets,
PETS2009 [3], ETHMS [16] and CAVIAR [2] datasets.

PETS2009: A sequence S2.L1 with 795 frames was used. 768
× 576 pixels.

1: procedure Constraints(∀t∀it∀dNd
t,it
,∀t∀it∀dLd

t,it )
2: for k′ = 1 to k do
3: for t = 1 to T − k′ do
4: for i = 1 to It do
5: for d = 1 to Dt,i do
6: for l′ = 1 to l do
7: Cost (4), c(k′, t, i, t + l′, j), is given to links

from Nd
t,i to Ld

t,i. � j is determined by k′, t, i, t + l′ because of
node-division principle.

8: end for
9: end for

10: end for
11: end for
12: end for
13: end procedure

Figure 12: Procedures used in the graph building shown in Fig. 11. For con-
venience, each original node, Nt,i, is replaced by N1

t,i in this figure. Dt,i is the
number of sub-nodes of N0

t,i.

ETHMS: 999 and 354 frames (BAHNHOF and SUNNY-
DAY). 14 fps. 640 × 480 pixels. Only a left-eye videos
were used, while the data has stereo sequences.

CAVIAR (2nd set): 20 videos (25587 frames in total). 25 fps.
384 × 288 pixels.

Detections in all frames and the ground-truth of tracking tra-
jectories were obtained from the publicly-available datasets [39,
40]. All datasets are available online [25, 1]. In the datasets,
the detections were obtained and represented as bounding boxes
automatically by a detector, while the tracking ground-truth was
given manually so that the detections were connected tempo-
rally.

A constant cost was given to all links connected to s and t
nodes (i.e., black-colored links in Fig. 4), as was done in [31].
The costs given to intra- and inter-frame links were determined
as follows:

Intra-frame: The score of each intra-frame link (i.e., Ci in a
cost function defined by Eq. (1)) was determined to be
constant.

Inter-frame: Inter-frame links between two consecutive
frames were given only between two nodes whose cor-
responding regions spatially overlapped, as was done in
[31]. According to the affinity model of [5], an inter-frame
link between two nodes Ni and Nj has a cost (i.e., Ci, j in a
cost function defined by Eq. (1)) consisting of appearance,
shape, and motion smoothness costs indicated by CA

i, j, CS
i, j,

and CM
i, j respectively:

Ci, j = CA
i, jC

S
i, jC

M
i, j (5)

CA
i, j = exp

(
− a(Ni) · a(Nj)
‖a(Ni)‖‖a(Ni)‖

)
(6)

CS
i, j = 1−exp

(
−
( ‖h(Ni)−h(N j)‖

h(Ni)+h(N j)
+
‖w(Ni)−w(N j)‖
w(Ni)+w(N j)

))
(7)

CM
i, j = 1 − exp

(
−||v(k)

i − v(k)
j ||

)
, (8)
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where a(Ni), h(Ni), and w(Ni) denotes the appearance fea-
ture, height, and width of a human window corresponding
to Ni. a(Ni) is the concatenation of size-normalized HSV
color images of Ni. v(k)

i denotes the directed velocity of
a window corresponding to Ni. Note that, in Eq. (3) ex-
pressing v(k)

i
3, an unknown variable m remains, but m is

determined uniquely in our extended graph because there
is a unique path from Ni to any node if the path exists.

In accordance with the previous work, the tracking perfor-
mance was evaluated with the following criteria [34, 9, 23]:

MT↑: Mostly Tracked trajectories indicate the number of tra-
jectories tracked successfully for more than 80%.

ML↓: Mostly Lost trajectories indicate the number of trajecto-
ries tracked for less than 20%.

FP↓ and FN↓: The false-positive and false-negative detection
rates, which are respectively computed by normalizing the
number of false-positives and false-negatives by the total
number of objects.

Frag↓: The number of times a trajectory is interrupted.

IDS↓: ID Switches indicate the number of times two trajecto-
ries switch their IDs. It is expected that this criterion di-
rectly evaluates whether or not the constraints on smooth-
ness of the proposed method work well, as shown in Fig.
1.

MOTA↑: 1−
∑

t N( f p)
t N( f n)

t N(ids)
t∑

t N(gt)
t

, where N( f p)
t , N( f n)

t , N(ids)
t , and N(gt)

t

denote the number of false detections, false negatives, ID
switches, and true detections at t-th frame, respectively.

MOTP↑: The misalignment between the annotated and the
predicted bounding boxes:

∑
t,i dt,i∑

t ct
, where dt,i and ct de-

note the overlap between detected and annotated bound-
ing boxes of i-th object and the number of matched pairs
of detected and annotated bounding boxes, respectively.

Sign ↑ represents that higher scores indicate better results, while
sign ↓ denotes that lower scores indicate better results.

The proposed method was tested with four different parame-
ters, Ours1, Ours1’, Ours2, and Ours3. Ours1 and Ours1’ used
the first-order smoothness constraints, and Ours2 and Our3
used the second- and third-order smoothness constraints, re-
spectively. Here, in n-th-order smoothness constraints, all of
{1, · · · , n}-th-order smoothness were presented in a graph. The
difference between Ours1 and Ours1’ is that every other frame
of an original sequence was used in Ours1’4, while Ours1 used
all frames.

Ours2 and Ours3 are expected to be better than Ours1. This
is because first-order directed velocities were unstable due to

3For simplicity, a time index t is ommitted from Eq. (3).
4Since the number of frames used in the evaluation of Ours1’ is reduced, its

results in Tables 2 and 3 are shown just for reference to validate the effect of
high-order smoothness.
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Figure 13: Tracking results of the proposed method in the PETS2009 dataset.

the noisy positions of detected human regions. In terms of the
amount of noise in dynamic features, Ours1’ had less noise than
Ours1 because the first-order directed velocities in every other
frame (i.e., dynamic features of Ours1’) are equal to the second-
order directed velocities in the original sequence (i.e., dynamic
features of Ours2). The difference between Ours1’ and Ours2
is that Ours1’ evaluates the static cues of human regions be-
tween every other frame, while Ours2 evaluates them between
two consecutive frames. This difference caused an increase in
dissimilarity between two nodes of a single person in Ours1’
rather than in Ours2.

4.1. PETS2009 dataset

The first dataset, PETS2009, is a relatively easy one. No
crowded people were observed and a camera observed people
obliquely from above so that they were not occluded with each
other in many frames. Figure 13 shows a part of tracking re-
sults.

The results of quantitative evaluation are shown in Table
1. The proposed method with the first-order smoothness (i.e.,
Ours1 and Ours1’) are inferior to the one with higher-order
smoothness constraints. This is because the first-order smooth-
ness is noisy and often causes miss-tracking such as track-
ing fragments, while the noise is suppressed by evaluating the
smoothness every other frame (i.e., Ours1’). The results of the
proposed method with the second- and third-order smoothness
constraints (i.e., Ours2 and Ours3) are almost same as each
other. The results of high-order smoothness constraints are sat-
urated depending on several factors such as the noise level and
the moving velocity of a target object. For example, if the posi-
tions of detected human regions are more noisy, directed veloci-
ties computed between a short frame interval are also noisy and
so higher-order smoothness is required. In detections given by
the dataset [40], since the positions of detected human regions
are not so noisy, directed velocities computed between t-th and
(t + 2)-th frames in Ours2 are sufficiently stable to suppress the
negative impact of the noise of the detected positions.

As can be seen in Table 1, while most state-of-the-arts
[27, 22, 39, 5] have their strong and weak points, the method
proposed in [27] has the best scores. The proposed methods
with the second- and third-order smoothness constraints (i.e.,
Ours2 and Ours3) are comparative to these state-of-the-arts.
Since the quantitative performance in this dataset is almost sat-
urated by these state-of-the-arts, comparison with other two
datasets (i.e., ETHMS and CAVIAR datasets) may be more in-
teresting.
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Table 1: Comparison of tracking accuracy with the PETS2009 dataset. While the best scores in each column are indicated in bold, the underlined ones indicate
scores that are within ± 5 % of the best scores. The scores of all other methods were given from their papers.

MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ Frag↓ IDS↓
Energy Min [28] 80.2 – 91.3 4.3 – – 6 11
PIRMPT [22] – – 78.9 0 – – 23 1
OLMOAP [39] – – 89.5 0 – – 9 0
UHMOT [27] 97.8 75.3 100 0 – – 8 8
OTC w/o learning [5] 78.2 69.4 100 0 20.3 1.3 10 16
OTC [5] 83.0 69.6 100 0 19.4 1.2 4 4

Ours1 (1st) 88.3 62.8 87.8 7.3 1.9 9.6 11 6
Ours1’ (1st & skip) 91.4 63.3 92.7 2.4 1.5 7.1 9 4
Ours2 (2nd) 91.9 67.5 97.6 0 1.3 6.7 5 2
Ours3 (3rd) 92.3 67.5 97.6 0 1.3 5.9 4 2

Table 2: Comparison of tracking accuracy with the ETHMS. The best and near-best scores are indicated in bold and by underline, respectively. The scores of all
other methods were given from their papers.

MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ Frag↓ IDS↓
PIRMPT [22] – – 58.4 8.0 – – 23 11
Online CRF [40] – – 68.0 7.2 – – 19 11
OTC w/o learning [5] 70.4 59.7 65.9 6.4 3.8 25.4 50 44
OTC [5] 72.0 64.0 73.8 2.4 4.2 23.6 38 18

Ours1 (1st) 60.4 53.0 60.5 8.9 7.9 31.4 71 27
Ours1’ (1st & skip) 65.8 55.6 65.3 7.3 7.6 26.3 39 30
Ours2 (2nd) 69.8 59.2 71.0 6.5 6.5 23.6 24 14
Ours3 (3rd) 70.8 61.0 70.2 4.8 6.3 22.8 30 17

10

9 11 97

10

9 11

10

9 11
35

Figure 14: Tracking results of the proposed method in the ETHMS dataset
(bahnhoff). A pedestrian of ID=10 could be tracked successfully, while she
intersects with a pedestrian of ID=97.
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Figure 15: Tracking results of the proposed method in the ETHMS dataset
(sunnyday).

4.2. ETHMS dataset

In the second dataset, ETHMS, most pedestrians are oc-
cluded with each other since the videos were captured from a
stroller. Tracking results in bahnhof and sunnyday sequences
are shown in Figs. 14 and 15, respectively.

The results of quantitative evaluation are shown in Table
2. The relative performance of the proposed methods (i.e.,
Ours1, Ours1’, Ours2, and Ours3) are almost identical to the
one shown in Table 1. While the proposed method with higher-

order smoothness constraints (i.e., Ours2 and Ours3) can ac-
quire higher MT, which is comparative with MT of the state-of-
the-art [5], the results of other criteria are mired in mediocrity
in the proposed method.

One of big differences between this state-of-the-art [5] and
the proposed method is that this method [5] improves an ap-
pearance model with online learning. Since the proposed
method just compares extracted appearance features between
two frames as defined in Eq. 6, its matching score is unreli-
able rather than the online tracklets [5]. The performance of the
online tracklets [5] without online appearance learning is also
shown in Table 2. The best proposed method, Ours2, is supe-
rior to this version in all criteria, MT, ML, Frag, and IDS. These
results suggest enhancing the appearance score function of the
proposed method for further performance improvement.

In the ETHMS, the regions of many pedestrians are enlarged
when they passed each other (e.g., ID=10 in Fig. 14). Such
an enlarged region causes long-term complete occlusion, which
makes even higher-smoothness ineffective. Figure 14 shows an
example where miss-tracking in the base method [31] was cor-
rected by the proposed method. Whereas ID=10 and ID=97
were switched incorrectly by [31], the proposed method tracked
them successfully.

4.3. CAVIAR dataset

Table 3 shows the results of quantitative evaluation with se-
quences of the CAVIAR. As with the results of the PETS2009
and ETHMS datasets, (1) the proposed method with the second-
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Table 3: Comparison of tracking accuracy with CAVIAR. The best and near-best scores are indicated in bold and by underline, respectively. The scores of all other
methods were given from their papers.

MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ Frag↓ IDS↓
PIRMPT [22] – – 86.0 0.7 – – 17 4
MOTLGM [36] – 83.5 82.0 90.7 2.7 – – 6 5
OTC w/o learning [5] 81.4 85.2 85.3 1.1 1.2 17.5 28 25
OTC [5] 86.5 87.2 89.5 0.0 1.0 11.4 8 9

Ours1 (1st) 79.7 80.3 69.2 8.4 3.2 17.1 33 27
Ours1’ (1st & skip) 80.7 82.0 72.0 7.0 2.7 16.6 21 19
Ours2 (2nd) 84.0 84.5 88.8 2.8 1.4 14.6 12 4
Ours3 (3rd) 84.9 87.1 90.9 2.8 1.7 13.4 8 5

23
21

30

23 21

27

23 21

30
2730

31

Figure 16: Tracking results of the proposed method in the CAVIAR dataset
(EnterExitCrossingPaths1cor).

and third-order smoothness constraints demonstrated the im-
proved performance rather than the first-order ones, but (2) the
proposed method even with high-order smootheness constraints
is inferior to the state-of-the-art [5] in terms of many evaluation
criteria. However, the proposed method with the third-order
smoothness constraints outperformed (1) the state-of-the-art [5]
without online visual learning except for ML and FP and (2)
also the full version of state-of-the-art [5] in MT and IDS. These
facts reveal that (i) visual cues play an important role for visual
tracking and (ii) high-order smootheness and constraints can be
also important cues.

Unlike all other methods, the method proposed in [36] em-
ploys group-struecture information [37, 33] as an additional cue
for tracking. Since these methods [5, 36] including the pro-
posed method got comparative good performance and each of
them has its advantages and disadvantages, all prospective cues
may be useful for improving the total performance.

Figure 16 shows an example in which the proposed method
could successfully track occluded pedestrians (i.e., ID=30).

5. Concluding Remarks

This paper proposed a method for improved globally-optimal
tracking of objects using smoothness in motion. Unlike previ-
ous methods, high-order constraints of high-order smoothness
can be employed by extending a graph with the dynamic fea-
tures of nodes, while maintaining the first-order link limitation
for efficient optimization.

Compared with previous methods, the proposed method im-
proved performance in public datasets. Several visualization
results demonstrating its typical effects are also shown.

Important future work includes long-term occlusion han-
dling. During such long-term occlusion, an inter-frame score

for object appearance is not useful or is harmful. This prob-
lem should be solved by, for example, explicit occlusion han-
dling that discriminate between nodes where target objects are
observed and occluded; see [42], for exmaple. In addition
to occlusion handling, sophisticated features for visual infor-
mation should be also employed because its effectiveness has
been demonstrated [5, 13]. For fair and conprehensive evaliua-
tion. experiments with a recently-available multi-object track-
ing benchmark, MOTChallenge [23], is also an important future
work.
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