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Abstract

In this paper we examine the efficacy of self-occlusion-
aware appearance learning for the part based model. Ap-
pearance modeling with less accurate appearance data is
problematic because it adversely affects entire learning pro-
cess. We evaluate the effectiveness of mitigating the in-
fluence of self-occluded body parts to be modeled for bet-
ter appearance modeling process. To meet this end, We
introduce an effective method for scoring degree of self-
occlusion and we employ an approach learning a sample
proportionally weighted to the score. We present our ap-
proach improves the performance of human pose estima-
tion.

1. Introduction
Human pose estimation is a task to infer the configura-

tion of a person’s body parts in an image. The leftmost
picture of Fig. 1 shows the inferred body configuration.
We base our approach on the improved pictorial structured
model (PSM) [19, 7, 11]. The PSM represents human body
configuration as a graphical tree model capturing inter-part
spatial relationships such as relative position and orienta-
tion, and decomposes appearance of human body into local
part templates.

For appearance modeling, it is not feasible to accurately
learn appearance of each body part with including occluded
body parts altogether. Many body parts often result in self-
occlusion in a natural image such as one body part covers
another one, as shown in of Fig. 1 (b) (c). Since the feature
of each body part would not have strong distinctive char-
acteristic (e.g. feature of lower and upper arms could be
both represented as similar figures of two parallel lines), ap-
pearance modeling for a local part template should be done
carefully.

To solve the problem above, we need to mitigate the
influence of occluded body part for appearance learning.
Therefore detection and measuring degree of self-occlusion
are necessary. Detection and measuring degree of self-
occlusion have been researched in previous works such as

[15, 18] but they require manual annotation for ground truth
of occlusion for prior learning of occlusion detector. Usu-
ally available datasets consist of hundreds or thousands of
images, therefore manually annotating ground truth of oc-
clusion for each image is a highly expensive option.

Our approach enhances appearance modeling of a local
part template by weighting a sample proportionate to the
degree of occlusion of its body parts. For self-occlusion
modeling using conventional pose-annotated training data
with no annotation of occluded body parts, we propose our
method in two folds. First, we introduce the occlusion con-
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Figure 1. (a) Result of human pose estimation. Inferred locations
of body parts are shown as colored lines. Different colored line
indicates different body part region. (b) (c) An example of self-
occlusion. A torso covers an arm in (b). An arm covers a torso
in (c). (d) Illustration of D(i), which is a approximate region sur-
rounding a body part i.
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Figure 2. Illustration of our proposed approach. We aim to im-
prove appearance modeling by reducing the effect of occluded ap-
pearance used for learning a local part filter.
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fidence model which detects possible occlusion on a body
part and measures its degree of occlusion. In the occlusion
confidence model, firstly we extract candidates of occluded
body parts based on pose annotation and then calculate pos-
sibility of being occluded for each extracted body part based
on its appearance. For measuring self-occlusion given a
body part appearance score in a sample, we need large num-
ber of various sorts of samples of occluded body part im-
ages to evaluate self-occlusion with various kinds of appear-
ance. To meet this end, we artificially synthesize large num-
ber of occluded body part images from non-occluded ones.
Note that we are proposing a method to improve robustness
against self-occlusion in model learning stage, inference of
human pose is done conventionally. The overview of the
proposed method is shown in Fig. 2.

2. Related Work

In an area of pose estimation from a still image, a graph-
ical model has been used to learn the distribution of hu-
man poses in recent works [16, 3, 14]. Especially the PSM
approach of Felzenszwalb and Huttenlocher [6] has been
widely adopted for the efficient globally optimized infer-
ence in number of previous works [2, 10]. For farther im-
provement of pose estimation, Felzenszwalb et al. [5] em-
ploys the iterative framework alternating between model
learning and refinement of the annotation in training image.

Relating research on self-occlusion such as the foreshort-
ening problem (i.e. A hand of an arm stretching forward
looks occluding an elbow) is conducted by Yang and Ra-
manan [19]. Their approach mitigates the problem from
foreshortening by dividing each rigid part (e.g. limb) into
several smaller parts.

Another approach regarding self-occlusion is proposed
by Johnson and Everingham in [12]. They use the dataset
which has incomplete annotation where an occluded body
part is not annotated in comparison to widely used the
datasets such as the Image Parse dataset [17] and Leeds
Sports Pose (LSP) dataset [13] which have annotation for
a self-occluded body part as well. Their approach is char-
acterized to discard a sample in appearance modeling if one
or more body parts are not annotated in a sample due to
self-occlusion. In this paper, based on the approach in [19],
we explicitly examine effect of self-occlusion to appearance
modeling. In our model we weight a sample containing an
occluded body part to be used in appearance modeling to
mitigate adverse effect of self-occlusion. Our approach is
more efficient in a sense that we fully utilize all training
data with high annotation cost compared to [12] in which
training data including an occluded body part is not used
even if the other body parts are visible and can be used for
appearance modeling.

3. Pictorial Structure Model
A tree-based model is defined by a set of body parts V

containing a root part and a set of links E connecting two
of the body parts. We denote I for an image. A hypothesis
z = (p0, ..., pn) specifies the location of each part in the
model, where pi represents the pixel location, orientation
and scale of part i.

Score of a hypothesis z is given by sum of the score of
the filter response of each body part at its location plus de-
formation cost that depends on the relative position of each
body part i with respect to body part j which forms a link
of tree-based model,

score(z) =
∑
i∈V

wi · φ(I, pi) +
∑
i,j∈E

wij · φd(pi − pj)

= β · ψ(I, z) (1)

where first term in Eq. (1) represents appearance score and
second term for deformation cost. In appearance score term
wi represents a filter for body part i and we write φ(x, pi)
as a feature vector (e.g. HOG descriptor [4]) extracted from
the pixel location pi in image I . In a typical example of def-
inition for deformation cost, term wij represents a four di-
mensional vector specifying coefficients of quadratic func-
tion defining the deformation cost and φd(pi − pj) defines
the deformation cost between body part i and body part j.
We define β as a concatenated vector of the filters wi for
each body part and dimensional vectors wij for the each
pair of body parts, and ψ(I, z) shows a concatenated vector
of feature vectors φ(x, pi) for each body part and the defor-
mation cost φd(pi − pj) for the each pair of body parts.

4. Appearance Modeling based on Occlusion
Confidence

Here we introduce our approach of learning appearance
model based on degree of self-occlusion of each body part.
Our method consists of three types of task below.

1. Occlusion confidence modeling, which is trained with
a set of occluded body part images as positives and a
set of non-occluded ones as negatives and it aims to
measure the degree of occlusion of each body part.

2. Data synthesis for occluded body part image, where
the goal is to generate occluded body part images from
non-occluded ones so that we can train the occlusion
confidence model in the first task without manually
annotating ground truth of occlusion for thousands of
images in a dataset.

3. Weighting sample for appearance modeling, where the
aim is that a sample which has more degree of occlu-
sion on its body parts less effects the learning process.



4.1. Occlusion Confidence Model

We aim to evaluate the probability of body part i being
not occluded given the filter response value of the body part
i to its local part filter. When we apply the local part filter
of the body part i to the image of the body part i without
self-occlusion, the response value tend to be larger than the
case with self-occlusion. We try to exploit this tendency by
formulating the probabilistic distribution of the linear gen-
erative model as the occlusion confidence model to derive
the degree of occlusion of a body part based on its appear-
ance.

The occlusion confidence model is two class softmax
function between a class of being occluded and a class of
being not occluded, which scores the degree of occlusion as
probability given the appearance score of a hypothesis. We
write probability of a body part i of an image I being not
occluded by the other body parts given a hypothesis of body
part locations z = (p0, ..., pn) as

Pi(o|wi · φ(I, pi)) ={
f
(

1
1+exp(−a)

)
, (O(i) 6= ∅)

1, otherwise
(2)

|D(i) ∩D(j)|
|D(i)|

> γ (3)

a =
N(wi · φ(I, pi)|µposi ,Σposi )Pi(o)

N(wi · φ(I, pi)|µnegi,O(i),Σ
neg
i,O(i))Pi(o)

(4)

Pi(o) =

∑
k |Ok(i)|∑

k(|Ok(i)|+
∑
j∈Ok(i)

|Ok(j)|)
(5)

In Eq. (2),Pi(o|wi · φ(I, pi)) represent possibility of the
body part i is being not occluded given the filter response
of the local part template of the body part i to the location
pi of an image I . We denote the state of being occluded
as o and being not occluded as o to be concise. f(·) is an
arbitrary function to adjust the range of the output value.
N(wi · φ(I, pi)|µposi ,Σposi ) is Gaussian distribution of the
appearance score of the body part i with µposi and Σposi

which are mean and variance of the appearance score of
the non-occluded body part i respectively. To express a set
of the body parts which overlap with the body part i, we
denote a set of the body part index j as O(i) that satis-
fies the ratio of the size (pixels) of the intersecting region
between the region D(i) and the region D(j) to the size
of the region D(i) is more than a threshold γ as show in
Eq. (3). D(i) is a region surrounding the body part i and
|D(i)| represents the number of pixels contained in D(i).
The graphical idea of Eq. (3) is illustrated in Fig. 1 (d).

N(wi · φ(I, pi)|µnegi,O(i),Σ
neg
i,O(i)) represents Gaussian distri-

bution of the appearance score of the body part i occluded
by a set of other body parts O(i) with µnegi,O(i) and Σnegi,O(i)
which are mean and variance of the appearance score of
the body part i occluded by the set of the other body parts
O(i). We denote the probability of the body part i being
not occluded as Pi(o) over all samples. Pi(o) denotes the
probability of the body part i being occluded over all sam-
ples, which is calculated as 1 − Pi(o). We assume there is
always one body part occluding the other body parts among
a set of the body parts inO(i) thus a body part having an in-
tersecting region with more number of the other body parts
has more possibility of being not occluded. We formulate
this idea as in Eq. (5).

4.2. Occluded Sample Data Synthesis

In order to train the occlusion confidence model, we need
a sample of an image being not occluded as a positive sam-
ple and being occluded as a negative sample for each body
part. We derive the positive sample set for the body part i as
{∀k|Ok(i) = ∅,∀i ∈ V }. We generate the negative sample
of the body part i being occluded by the body part j from
the positive sample of the body part i and the body part j
by cropping the region of the body part j in the sample im-
age and overlay the cropped region onto a sample image of
the body part i. The procedure is summarized as follow:
a) Superpixelize an image of the body part j. b) Label each
pixel cluster either foreground ( a body part region) or back-
ground. c) Crop foreground and overlay it to the image of
the body part i. Above procedure is illustrated in Fig. 3.
We employ the off-the-shelf method of [1] to superpixelize.
For cropping a region of a body part from background, we
utilize annotation to extract the region from background in
Bayesian manner as

p(F |x, d) =
p(x, d|F )p(F )

p(x, d)
=
p(x|F )p(d|F )p(F )

p(x, d)
(6)

In Eq. (6) p(x|F ) represents distribution over an RGB value
x of pixel belonging to the clusters which locates on the
line segments connected from a parent of the body part to
a child(ren) of the body part passing through the body part.
We formulate p(x|F ) as mixture Gaussian distribution over
with mean and variance over RGB pixel values of each clus-
ter. p(d|F ) shows Gaussian distribution given mean and
variance over the approximated body part width d. d is cal-
culated as the shortest distance to the line segments as previ-
ously described and it is normalized by the size of the anno-
tated image box for each body part. We regard p(x, d|F ) is
conditionally independent over F because on the same body
part region, pixels tend to share relatively similar color dis-
tribution and distribution of d is also arguably consistent.
We apply Eq. (6) to all pixels in a sample image to derive
per pixel likelihood of being foreground. Then we calcu-
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Figure 3. Illustration of negative image synthesis. We generate
negative samples from positive samples.

late mean likelihood per cluster and select clusters whose
likelihood is above a threshold as foreground. In actual cal-
culation we use p(F |x, d) ∝ p(x|F )p(d|F ) by assuming
p(F )

p(x, d)
are constant compared to p(x|F )p(d|F ) for calcu-

lation efficiency.

4.3. Sample Weighting with Occlusion Confidence

In our base method [19], Latent SVM is used to learn the
PSM. We control a sample I influencing learning a positive
sample by weighting the SVM’s cost function L(β) accord-
ing to the sample’s occlusion confidence as

L(β) =
1

2
‖β‖+ C(I) ·B ·max(0, 1− fβ(I)) (7)

In Eq. (7) fβ(I) denotes score of the SVM with a sample
image I and the parameter β over the best hypothesis z.
B is the batch size or the number of total positive sample.
C(I) shows an arbitrary weighting function for a sample I
regarding the occlusion confidence for all body part derived
from Eq. (4). In our experiment we use following formula-
tion:

C(I) =
1

|V |
∑
i∈V

pi(o|wi · φ(I, pi)) (8)

In Eq. (8) the cost is simple average over the occlusion con-
fidence of all body parts. In our model of weighting sample,
the aim is that sample having more occluded body parts in-
fluences less in learning. In this approach, not only appear-
ance part but deformation part in Eq. (1) will be affected
in learning process but we believe this is justifiable because
occluded body parts are mostly invisible thus the deforma-
tion information from the annotation can be arguably noisy
and less preferable to be used for learning.

5. Experimental Results

In this section we report the results of our experiments
on the proposed method using the Image Parse dataset [17].
The Image Parse dataset contains 305 images with pose-
annotation in total with the standard train/test split. First
100 images are for training and the rest of 205 images are
for testing.

In accordance with this base model [5], we use full-body
skeleton model. 26 body parts were used in our implemen-
tation for covering each body region; 2 for head, 8 for the
torso, 4 for each limb.

For validating the ability of detecting occlusion, we man-
ually give annotation of occlusion to all body parts in the
dataset to derive the average number of occlusion for each
body region: torso, head, upper arms, lower arms, upper
legs and lower legs. The number of occlusion in each body
part is shown in Table. 1.

In Eq. (2), we experimentally decide to use f(x) =
1

1+exp(−x+0.75)20 . In negative data synthesis for the occlu-
sion confidence model, we use γ = 0.25 for thresholding
foreground and background in Eq. (3).

We tested our approach in standard criteria, probability
of a correct pose (PCP) Buffy implementation [9], using the
person-centric annotation. The implemented code is dis-
tributed at the author’s website [8]. The result is shown in
Table. 2. In PCP our approach gives superior performance
to the base method in most of body parts. This is likely be-
cause our approach successfully learns appearance model
which are less distracted by other occluding body parts ap-
pearance, and this leads to more accurate inference of the
body parts configuration. This is especially true in lower
and upper arms whose scores have significantly increased
by 7.3% and 2.4% respectively in our approach. The typical
examples of estimated human pose of our model is shown in
Fig. 4. In the figure, we can see our model (an image shown
on the right of the image pair) performs better to predict the
locations of lower and upper arms than the base model (on
the left of the image pair). Performance improvement on
arms is likely because lower and upper arms have the most
number of occlusion, thus our method is especially effective
reducing the negative effect of occlusion.

In the proposed method, the occlusion confidence model
is required to detect the occluded parts for reducing their
negative effect of occlusion in appearance modeling. On
the other hand, the occlusion confidence model is also re-
quired not to falsely detect the non-occluded body parts as
occluded ones for efficiently using as many samples in a
dataset as possible. To evaluate whether or not this require-
ment is fulfilled, the recall rate of occlusion detection is an
important criterion. Here we say an occluded body part is
detected if the probability of the body part being not oc-
cluded as in Eq. (2) is less than one. In the dataset men-
tioned above, the recall rate and the false detection rate with
Eq. (2) are 66.3 % and % 21.3, respectively. While the
recall rate is not high enough yet, almost all the occluded
body parts, which give the huge negative impact on learn-
ing part appearance, could be detected by our method. In
other words, the occluded body parts that were not detected
by our method are expected to have less harmful impact on
appearance model learning.



Table 1. Average number of self-occlusion on each body part re-
gion. The number is averaged over number of consisting body
parts of each body part region (i.e. the number of occlusion for
lower arms is derived by averaging the number of occlusion in
their eight body parts).

Torso Head U.arms L.arms U.legs L.legs
10.75 2 11.75 10.75 9.25 6

Table 2. Comparison of PCP. We list the other methods’ on the
Parse Image dataset. (a) Johnson [12], (b) Base appoach [19], and
(c) Ours.

(a) 87.6 76.8 74.7 67.1 67.4 45.9 67.4
(b) 85.4 84.4 70.8 47.8 77.8 71.2 70.5
(c) 87.3 86.3 73.2 55.1 79.0 71.2 73.1

6. Conclusion

We have introduced the model that improves appear-
ance modeling for the PSM. We show that reducing the
effect of occluded body parts to be modeled can provide
better appearance modeling to improve estimation perfor-
mance. Our approach is more efficient on fully using all
samples in a dataset for mode learning compared to the
previous work [12] discarding whole images including oc-
cluded body parts for appearance model. We have shown
that our method leads to superior result than the base ap-
proach. In future work we would like to drop the false
detection rate to more efficiently learn samples and to in-
vestigate the other weighting approaches of a sample given
its degree of occlusion of each body part other than simple
averaging.
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Figure 4. Typical results of our model compared to the base
model. Result of our model is shown on the right and the base
model on the left in the each pair of images. Caption below an
image indicates how many body part regions are successfully lo-
calized out of all ten body part regions.
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