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Abstract

We have developed a system with multiple pan-tilt cam-
eras for capturing high-resolution videos of a moving per-
son. This system controls the cameras so that each camera
captures the best view of the person (i.e. one of body parts
such as the head, torso, and limbs) based on criteria for
camera-work optimization. For achieving this optimization
in real time, time-consuming pre-processes, which give use-
ful clues for the optimization, are performed in a training
stage. Specifically, a target performance (e.g. a dance) is
captured to acquire the configuration of the body parts at
each frame. In a real capture stage, the system compares an
online-reconstructed shape with those in the training data
for fast retrieval of the configuration of the body parts. The
retrieved configuration is used by an efficient scheme for
optimizing a camera work. Experimental results show the
camera work optimized in accordance with given criteria. A
high-resolution 3D videos produced by the proposed system
are also shown as a typical use of high-resolution videos.

1. Introduction
Performance capture[1, 2, 3, 4] is an important technique

for 3D digital archiving and movie production. While the
previous work on performance capture achieves fine 3D re-
construction and texture mapping, its accuracy has limita-
tions if a target person is captured in low resolution, as
shown in the left example in Fig. 1. Not only for perfor-
mance capture but also for improving a variety of image un-
derstanding algorithms, high-resolution images and videos
of the target person are useful. For example, detailed facial
parts can be obtained for emotion understanding. Precise
skills (e.g. theatrical forms, sports skills, and crafts) can
be analyzed from the 3D motion of the person. This paper
proposes a system for capturing high-resolution videos of a
moving person by employing zoom-in pan-tilt cameras.

While a zoom-in camera can capture the high-resolution
images of a part of a person, its field of view is limited and
cannot contain the whole body of a person. This limitation
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Figure 1. Comparison between conventional and proposed ap-
proaches. (Left) Conventional approach: only zoom-out images
are captured by the conventional approaches. (Right) proposed
approach: in addition to the zoom-out images, zoom-in images
are captured continuously by pan-tilt cameras. (Bottom) 3D tex-
tured surfaces produced by the captured images demonstrate the
effectiveness of the zoom-in images.

causes need for dynamic camera working (i.e. pan-tilt con-
trol) of multiple zoom-in cameras in order to continuously
capture the whole body of the moving person. In an exam-
ple shown in the right of Fig. 1, the head of a performer
was captured by zoom-in pan-tilt cameras. These cameras
enable high-resolution performance capture by employing
existing methods[1, 2, 3, 4].

Technical issues in developing the system with zoom-
in pan-tilt cameras are (1) criteria for a camera work tak-
ing into account the dynamic configuration of moving body
parts and (2) real-time optimization of the camera work.

The proposed criteria are designed based on the prior-
ity of body regions and the quality of 3D reconstruction.
The real-time optimization is achieved by reducing possi-
ble camera-works, offline training of possible human body
configuration, and a simple optimization scheme for camera
working.

2. Related Work
While a variety of camera parameters can be controlled

in an active vision system as mentioned in [5], our work

1



Cameras

PC cluster for video capturing 

and camera control

Sync unit

Camera

Rotational 

encoders

(a) Studio (b) Pan-tilt camera unit
Figure 2. Experimental environment and system. (a) Multiple syn-
chronized cameras and computers located in a chroma-key stu-
dio. (b) A pan-tilt camera unit consists of a camera, a computer-
controllable pan-tilt unit, pan-tilt encoders for inquiring accurate
pan-tilt angles, and a synchronization unit that gets the pan-tilt an-
gles in synchronization with image capturing timing.

focuses on the pan-tilt angles of fixed cameras. In this
work, a general control issue[6] is not discussed, but we
consider how to determine the pan-tilt angles of all cameras
so that they cooperatively capture a target. The pan-tilt an-
gles should be determined to capture important components
of the target depending on the task. In general tasks, main
components captured by the cameras are the 3D shape and
textures of the target. For example, human behavior[7, 8]
and emotion[9] can be represented by the motions of the
body shape and the facial textures, respectively.

Previously, for accurate shape reconstruction, camera
viewpoints are optimized for a stationary object[10]. As
well as a 3D shape, a texture is targeted for object recog-
nition with viewpoint optimization[11]. In terms of mov-
ing objects, people[12] and their faces[13] are captured in
surveillance scenarios. The limitation of these works is that
their targets are only simple objects (e.g. a static object,
the whole body, and only a part of the body). While multi-
ple parts of the whole body are targeted by multiple pan-
tilt cameras in [14], its computational cost in optimizing
the camera work is huge (i.e. not in real time) and it has
been tested only in a simulation environment. For real per-
formance capture, we propose real-time camera-work opti-
mization in this paper.

3. System Architecture
The system consists of synchronized cameras and com-

puters, which capture and analyze images online and con-
trol the cameras taking into account the analysis results.
The cameras are positioned so that they surround a subject
located around the center of a studio, as shown in Fig. 2 (a).

In our system, the focal length of every camera is fixed.
Several cameras are able to control their pan-tilt angles and
are possessed of a zoom-in lens for high-resolution capture,
while other cameras are fixed and zoomed out for stably
observing the whole body of a moving subject.

As shown in Fig. 2 (b), each pan-tilt camera allows us
to obtain the pan-tilt angle synchronized with every image
capturing timing. This function is crucial for reconstruct-
ing a 3D human body while the pan-tilt angle is controlled
dynamically. This is because external camera parameters,
which are required for 3D reconstruction, can be computed
from those in the canonical camera angle and the correct
pan-tilt angle at each moment[15].

All computers with the cameras send captured images to
a server computer that reconstructs a 3D shape and deter-
mine a camera work at each time.

4. Body Parts Retrieval
In the previous camera-work optimization system[14],

all continuous pan-tilt angles (e.g. 0.1 degrees, 0.01 de-
grees) are evaluated. This requires huge computational cost
due to combinatorial explosion. For reducing the computa-
tional cost, we evaluate only a limited number of pan-tilt an-
gles for real-time optimization. The pan-tilt angles should
be limited carefully in order to search for a nice camera
work. Specifically, the pan-tilt angles are limited so that
each camera gazes at one of body parts (e.g. head, torso,
and limbs). This limitation reduces a search space while
any body region can be possibly captured in high resolu-
tion.

4.1. Offline Training

The camera working for body parts requires segment-
ing a human body into the body parts. Real-time 3D body-
part segmentation can be achieved with training data of real
images[16] and simulation images[17]. In contrast to sim-
ulation images[17], real images[16] have the advantages in
terms of accuracy and flexibility for complex shape and mo-
tion of a target. This method[16], however, needs specially-
colored clothing, where each body part is colored differ-
ently, for training images. To alleviate this labor and cost,
easier segmentation is proposed in this paper.

For training, the system captures a subject whose per-
formance and clothing are similar to those in a real capture
stage. Any color and textures of the clothing are acceptable.
That is, the 3D shape of the subject must be similar between
training and test data.

Figure 3 shows the abstract of the proposed body-parts
labeling. The whole body is divided into five parts, namely
the head, torso, legs, right arm, and left arm. Instead of
the colored clothing, only colored gloves are employed. In
each image, pixels corresponding to the hands and the face
are labeled by color detection and face detection[18], re-
spectively. A surface point cloud is reconstructed by shape-
from-silhouettes[19].

The pixelwise labels of the hands and the face are pro-
jected onto the reconstructed 3D points and regarded as
their initial seeds in the 3D body. The initial seeds of the
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Figure 3. Labeling 3D body parts in reconstructed voxels. Each
pixel in a labeled image has one of the following five labels: back-
ground, head, left hand, right hand, and other body regions. Sur-
face points are reconstructed from multiview silhouettes. Each sur-
face point is labeled by one of the following five parts, namely the
head, torso, legs, right arm, and left arm. Small circles superim-
posed in the labeled points depict the centroids of the five parts.

torso and the legs are given in the median and 30cm-above-
bottom of the reconstructed points, respectively. Then un-
labeled points are labeled based on the nearest neighbor la-
beled points. Since the proposed system controls camera
views towards the centroids of body parts in a real capture
stage, the centroid of the labeled points is computed in each
body part in a training stage. The centroids are recorded as
training data with the surface points of the whole body.

The training data described above is obtained in all
frames of a target human-motion sequence, which is cap-
tured in advance for training.

4.2. Online Retrieval

In a real capture stage, the surface point cloud, s, is re-
constructed by shape-from-silhouettes. The centroids of all
body parts in s are obtained for camera working. Note
that, in the online capture, a target person wears no col-
ored gloves. The centroids are obtained by retrieving the
s’s nearest neighbor from the training data.

For nearest neighbor retrieval of a human body shape,
while dense pointwise matching[20, 21] is robust, its com-
putational cost is unsuited for real-time online retrieval.
For efficient and robust retrieval of the nearest neighbor,
a high-dimensional point cloud is translated to its volume
descriptor[22], where the point cloud is divided into several
bins. In our experiments, 1) the shape of the bin model is a
cylinder, whose vertical center axis passes through the me-
dian of all points, 2) the cylinder is divided by 35 height
divisions, 12 azimuth divisions, and 3 radius divisions, and
3) the entity of each bin is the number of points. The di-
mension of a descriptor is 1260. Dissimilarity between two
descriptors, f1 and f2, is expressed by ||f1 − f2||2.
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Figure 4. Utility function 1 for camera-work optimization: Oc-
clusion check. Camera i might be able to capture the right arm
because it is located between i and the body. In this example, vec-
tors from i and the torso to the right arm are compared. Vectors
with warmer colors indicate the view lines having higher scores.
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Figure 5. Utility function 2 for camera-work optimization: Re-
construction error reduction. Camera view lines to potential error
regions (i.e. a cube in the figure) are evaluated for carving check.
Vectors with warmer colors indicate the view lines having higher
scores.

5. Real-time Camera-work Optimization

5.1. Utility Functions

A camera work is optimized so that the utilities of all
cameras for capturing their target parts are maximized. The
following utility functions are used for this optimization:

Occlusion avoidance (Fig. 4): A camera should observe
its target part with no occlusion. For this occlusion avoid-
ance, given a 3D vector from each camera i to the torso
(denoted by vi) and one more 3D vector from the torso to
a potential target part p (denoted by vp), angle θi,p between
vi and vp is evaluated. The smaller θi,p is, the higher the
utility of camera i becomes. This is because it seems very
possible that part p is occluded by the torso if θi,p is larger
(i.e. be close to π), in other words, if p is located beyond
the torso from i’s side. The utility function, Fo(i, p), is ex-
pressed as follows:

Fo(i, p) = cos
θi,p
2

(1)



Reconstruction error reduction (Fig. 5): For improv-
ing a reconstructed shape, the pan-tilt cameras should be
controlled for reducing reconstruction error. To this end,
we focus on the property of shape-from-silhouettes, which
carves false-positive error regions. Our strategy is that 1)
whether or not each false-positive of a visual hull, which
is obtained by shape-from-silhouettes, contained in train-
ing data can be carved is probed in a training stage and 2)
then, in a real capture stage, the nearest neighbor of a recon-
structed visual hull is searched for from the training data in
order to retrieve false-positives that can be carved. While
probing whether or not each false-positive can be carved
needs huge computational cost, reconstructing a visual hull
and its nearest neighbor search can be performed in real
time.

Assume that the false-positives in a visual hull at each
training frame are known by comparing the visual hull, h,
and a more correct 3D shape, s, reconstructed by a slow but
more accurate algorithm such as [23]; (h − s) is regarded
as the false-positives. Then view lines that can carve each
false-positive with no occlusion are found. These view lines
are found by checking whether or not each view line passing
through a false-positive of interest intersects the surface of
h1; if the view line intersects the surface, in other words,
if the surface occludes the view line, this view line cannot
carve the false-positive. The positions of the false-positives
with such view lines in each training frame are recorded
with their respective visual hull as training data.

In the online capture stage, body-shape retrieval gives us
the positions of false-positives with view-lines for carving
them. Let e and le denote a false-positive and a view-line
that can carve it, respectively. The more a view-line from
camera j to e (depicted by lj in Fig. 5) is parallel to le,
the more likely e can be carved by camera j. This property
provides us the following utility function:

Fr(j, e) = cos θj,e (2)

Camera motion dynamics: Camera-work at time t
should be determined so that it is close to camera-work at
t− 1. This is because 1) fast camera motion causes motion
blur in an image and 2) it is impossible to control the pan-
tilt angle beyond the mechanical limitation on rotational ve-
locity. In the proposed system, the upper limitation of a
pan-tilt velocity is determined as follows. First of all, im-
ages are captured with various rotational velocities under
actual camera parameters (e.g. shutter speed) and environ-
ment (e.g. lighting condition). Then the fastest velocity,
vmax, which allows a camera to capture an unblurred image
is selected2 for thresholding in the following camera-work

1The surface was reconstructed by surface meshing[27].
2More practically, the acceleration of the pan-tilt angle should be con-

trolled. In experiments shown in this paper, however, simple velocity
thresholding was sufficient to capture unblurred images because the ve-
locity was slow.
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Figure 6. Camera setup in a studio. Camera number IDs corre-
spond to those in Figure 8.

optimization.

5.2. Optimization Scheme

With utility functions (1) and (2), a camera work is opti-
mized efficiently based on a greedy algorithm approach:

1. For all combinations of unoptimized cameras and
parts, utility functions (1) and (2) are computed. Ex-
cept that the combination of camera i and part p is ne-
glected if the pan-tilt velocity from the current pan-tilt
of i to the pan-tilt towards p is above vmax.

2. Given weight variables wo and wr, the following score
is computed for all the combinations described above:

woFo(i, p) +
wr

|Ei,p|
∑

e∈Ei,p

Fr(i, e), (3)

where Ei,p denotes a set of false-positive voxels that
are within the field of view of i-th camera when its
view direction is towards p-th part. wo = wv in our
experiments.

3. In addition, the priority of each part, w(p), is given to
the score:

wp

⎛
⎝woFo(i, p) +

wr

|Ei,p|
∑

e∈Ei,p

Fr(i, e)

⎞
⎠ , (4)

4. A combination with the highest score is selected. Then
the camera work of the selected camera is determined.
If any cameras remain to be unselected, go back to 1.

6. Experiments
All experiments were conducted in a studio shown in

Figs. 2 (a) and 6. While the number of cameras used for



Figure 7. Top: image sequence obtained by a zoom-out camera.
Middle: Online-reconstructed point cloud. Bottom: Retrieved
body-parts labels.
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Figure 8. Six and eight images were captured by fixed zoom-out
cameras (i.e. cameras 3, 7, 9, 12, 13, and 14) and zoom-in pan-tilt
cameras (i.e. cameras 1, 2, 4, 5, 6, 8, 10, and 11).

performance capture was different among the experiments,
a combination of zoom-in and zoom-out cameras was em-
ployed in all the experiments. This is because the zoom-
out cameras were useful for continuously reconstructing
the whole body that is required for body-parts retrieval.
The zoom-in and zoom-out cameras, each of whose resolu-
tion was 1024 × 768 pixels, were possessed of lenses with
25mm and 6mm focal lengths, respectively.

In first experiments, body-parts retrieval was verified.
Six zoom-out cameras were used for reconstructing the vi-
sual hull of a subject. 600 frames, which contained three-
times repeated dance motion, were captured for training.
Their volume descriptors were stored as a KD-tree for ef-
ficient search. The same subject was captured in a query
sequence. The subject performed in the training and query
sequences as similar as possible. Figure 7 shows the query
image sequences captured by one of the cameras, the sur-
face point cloud of the reconstructed visual hull, and the re-
trieved body-parts labels. It can be seen that the labels were
obtained with no major mistakes. For applying the training
data to anybody’s dance similar to the training one, general-
ity of the training data should be improved. The generality
can be improved, for example, by probabilistic dimension-
ality reduction as achieved in [24, 25, 22].

Next, in addition to the six zoom-out cameras, the system
used eight zoom-in pan-tilt cameras that were controlled by
the proposed camera-work optimization using the retrieved
body-part. The body-part retrieval was achieved with train-
ing data obtained in the first experiments described above.
For validating the effects of the basic properties in the pro-
posed optimization (i.e. computational cost and camera
work based on the priorities of body parts), a stationary
mannequin was captured. 14 images captured by the system
are shown in Fig. 8. Images captured only by the zoom-out
cameras were used for reconstructing a shape, which was
employed for online body-parts retrieval.

The computational costs were 50ms in 3D reconstruc-
tion with 2cm3 voxels and less than 10ms for retrieval and
camera-work optimization. The bottleneck in 3D recon-
struction was image transmission by UDP and must be sped
up for capturing a fast motion. On the other hand, the pro-
posed retrieval and optimization could work in real time.

Since higher priorities were given to the head, torso, and
arms, the zoom-in cameras captured the four parts evenly, as
shown in Fig. 8. In this camera work, the theoretical spatial
resolutions of the parts captured in high-resolution and the
legs, which were captured only by the zoom-out cameras,
were 0.7mm/pixel and 2.5mm/pixel, respectively.

For demonstrating an application of high-resolution
videos, textured 3D mesh sequences were produced. Since
accurate external camera parameters are required at each
frame, the pan-tilt angle of each camera was controlled to
either of several pre-calibrated pan-tilt angles, which was



Figure 9. Swinging arms: 12 captured images used for generating
the righthand result in Fig. 10. 8 and 4 images were zoom-out and
zoom-in images, respectively. In the zoom-out images, a human
body region is cropped for conserving space.

Figure 10. Swinging arms sequence: results of mesh reconstruc-
tion and texture mapping.

Figure 11. Swinging arms sequence: results of mesh reconstruc-
tion and texture mapping obtained only from 14 zoom-out images.

the nearest neighbor of the pan-tilt angle optimized by the
system, as proposed in cell-based tracking[26].

After capturing image sequences in a real capture stage,
a point cloud was reconstructed by fusion of shape-from-
silhouettes[19] and multiview stereo[23]. The point cloud
was then used for surface meshing[27]. Texture mapping
was implemented by simple OpenGL functions.

Figures 9 and 10 show captured synchronized images
and textured mesh surfaces. In the experiments, eight zoom-
out and four zoom-in cameras were used. The score func-
tion was designed to give high priority to the head for cap-
turing high-resolution facial expression. For comparison,
textured mesh surfaces produced only from zoom-out im-

Figure 12. 12 captured images used for generating the righthand
result in Fig. 13.

Figure 13. Textured 3D mesh
obtained from high-resolution
images.

Figure 14. Textured 3D mesh
obtained only from 12 zoom-
out images.

Figure 15. 3D mesh obtained
from high-resolution images.

Figure 16. 3D mesh obtained
only from 12 zoom-out images.

ages are shown in Fig. 11. Superiority of the results ac-
quired by the proposed system is apparent.

One more experiment was conducted for producing a
textured mesh sequence. Images captured by the proposed
system are shown in Fig. 12. High priority was given to a
tennis racket as well as the head. The region of the racket
was labeled by appearance-based object detection[18]. Tex-
tured mesh surfaces produced from all images captured by
the proposed system and only from zoom-out images are
shown in Figs. 13 and 14, respectively. It can be seen that
the proposed system could get finer textures of the face.

For verifying the reconstructed shapes, non-textured
mesh surfaces are shown in Fig. 15 and 16, which were re-
constructed by employing zoom-in and only zoom-out cam-
eras, respectively. It is also clear that a more smooth and
accurate facial mesh was reconstructed by the zoom-in im-
ages; facial parts (i.e. nose and eyes) are seen in Fig. 15.

7. Concluding Remarks
This paper proposed the high-resolution video capture

system with zoom-in pan-tilt cameras. As well as the zoom-
in cameras, zoom-out cameras also compose the system for



continuously capturing the whole body of a target person.
The shape of the whole body is employed for retrieving
body parts, which are targeted by the zoom-in pan-tilt cam-
eras. Several experiments demonstrated the elemental com-
ponents of the proposed system (i.e. real-time body-parts
retrieval and camera-work optimization) and applicability
to producing high-quality 3D videos.

Future work includes real-time camera control, accurate
camera parameter acquisition while dynamically control-
ling pan-tilt cameras[15], and developing a variety of ap-
plications of the proposed system.

The source codes of PMVS[23] and Poisson surface
reconstruction[27] were given by Y. Furukawa and M.
Kazhdan, respectively. The authors would like to thank all
of them.
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